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Abstract

An Adaptive Cell-Centered Projection Method

for the Incompressible Euler Equations

by

Daniel Francis Martin
Doctor of Philosophy in Engineering-Mechanical Engineering
University of California at Berkeley

Professor Phillip Colella, Chair

Adaptive methods for the numerical solution of partial differential equations concentrate
computational effort where it is most needed. Such methods have proved useful for overcoming
limitations in computational resources and improving the resolution of numerical solutions to a
wide range of problems. By locally refining the computational mesh where needed to improve the
accuracy of the solution, we more efficiently use computational resources, enabling better solution
resolution than is possible with traditional single-grid approaches, representing a more efficient use
of computational resources.

In this work, we present an adaptive cell-centered projection method for the incompressible
Euler equations. It is an extension of the adaptive mesh refinement (AMR) methodology developed
by Berger and Oliger for hyperbolic problems. Our algorithm is fully adaptive in time and space
through the use of subcycling, in which finer grids are advanced at a smaller timestep than coarser
ones. When coarse and fine grids reach the same time, they are then synchronized to ensure that the

global solution is conservative and satisfies the divergence constraint across all levels of refinement.



Our method introduces three main innovations. First, we extend a cell-centered approxi-
mate projection discretization to a multilevel hierarchy of refined grids. Employing a cell-centered
projection discretization permits the use of only one set of (cell-centered) solvers, which simplifies
implementation and extension of this algorithm. Also, we use a volume-discrepancy scheme to ap-
proximately correct for advection errors due to the presence of coarse-fine interfaces. Finally, we
synchronize coarse and fine levels by performing multilevel solves over all grids which have reached
the same time.

Results are presented which show that the method presented in this work is second-order
accurate, does not introduce instabilities due to the presence of coarse-fine interfaces, and which

demonstrate the increased solution accuracy due to local refinement.

Phillip Colella, Chair Date
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Chapter 1

Introduction

Adaptive numerical methods which focus computational effort where it is needed have been
a focus of much research. Solutions to the equations which govern the behavior of many physical
phenomena, including those of fluid dynamics, can display behavior over a great number of scales.
In many cases, it is necessary to resolve features on very small scales in order to accurately compute
larger-scale features of the solution.

The traditional solution to numerical under-resolution of a problem has been to employ a
uniformly fine computational mesh over the entire problem. In general, for a finite-difference/finite-
volume method, the accuracy of the solution depends on the mesh spacing. The finer the finite-
difference mesh (i.e. the more mesh points in a given region), the more accurate the solution.
Unfortunately, due to limitations in computational resources, it is often impossible to use a single
uniform mesh to solve a given problem to the desired accuracy. On the other hand, it is often the
case that the finest resolution is only required in regions which only make up a small fraction of the
computational domain. Computing an unnecessarily fine solution outside these regions represents

a waste of computational resources. One example of this arises in aerodynamics. When computing
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the flow around an aircraft, high resolution is often required to adequately resolve rapidly varying
features like boundary layers and wakes, while in large regions far from the body, the solution varies
little, requiring less resolution to accurately represent the solution. In many cases, use of a uniform
fine mesh will result in the bulk of available computational resources being spent computing an
unnecessarily accurate solution in regions far from the body, while important flow features near the
body are under-resolved due to a lack of resources.

In recognition of this, there has been much effort toward developing methods which adapt
the finite-difference mesh to place more grid points in regions where higher resolution is needed,
while using fewer grid points in regions where a coarser mesh is sufficient to adequately resolve
the solution. Baker [11] provides a good survey of adaptive methods in a finite-element context
(although the refinement concepts are generally applicable).

One strategy is known as clustering. In this approach, the total number of grid points and
grid topology is kept constant, and the grid itself is moved to place higher resolution (in the form
of a finer mesh) where necessary, while coarsening the grid in regions where a fine mesh is deemed
unnecessary. The mesh itself deforms to follow features in the flow. For this reason, this approach
is often known as the moving-grid approach. This approach has found the most application in
aerodynamics, particularly in steady-state solutions. Advantages of this method include preservation
of the basic topology of the mesh, which can be very useful in parallel implementations because
partitioning and load-balancing of the solution can be maintained as the solution evolves. Also, it
has the advantage of a uniform discretization on a fixed-logic mesh, rather than discrete coarse and
fine regions. With the proper grid generation algorithms, transitions between coarse and fine regions

can be made smooth, eliminating discontinuities in the computational mesh itself. In principle, the
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goal of this strategy is equidistribution of error among all the cells in the computational domain
for a given number of mesh points. In this sense, solutions are optimal, in that they represent the
best possible use of available computation [11]. Like the moving grid approach, unstructured grids
also have the advantage of a uniform problem description, in that the discretizations used in refined
regions will be the same as those used in coarser regions. This makes it easy to add adaptivity to an
existing method, because it does not involve new discretizations. Unfortunately, it is generally more
difficult to control the accuracy of the discretization in unstructured-grid methods, particularly for
problems without a variational formulation. As in the moving grid approach, care must also be
taken to control the quality of the resulting grid, with respect to stability and conditioning of the
representation of the problem on the mesh. Moreover, unstructured grid methods generally require
more memory to store the various metrics necessary for computation.

Structured meshes, in contrast, are made up of a regular tessellation of cells which all
have the same local connectivity. The most common type of structured mesh is a rectangular
Cartesian mesh. Design and implementation of finite-difference methods on structured meshes is
very well understood, and the regularities of the mesh can be exploited to increase the accuracy of
the discretization. Also, it is simple to apply multigrid accelerated iterative methods to construct
construct fast elliptic and parabolic solvers for structured meshes. The main disadvantages of struc-
tured meshes has been the difficulty of adapting such meshes to complex geometries, although some
progress has been made in this area [2, 3, 8, 21, 28, 50]. Also, local refinement on structured meshes
will result in a discontinuity in the mesh spacing between coarse and refined cells, which often en-
tails a loss of accuracy. Structured mesh finite-difference approaches have been used extensively in

a variety of applications, including aerodynamics, shock dynamics, and atmospheric fluid dynamics.
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O cellsthat need to be refined O cellsthat need to be refined
(a) (b)

Figure 1.1: Local refinement strategies: (a) cell-by-cell refinement, (b) block-structured refinement

On structured meshes, local refinement can either be cell-by-cell or block-structured (Figure
1.1). In cell-by-cell refinement, cells are individually chosen for refinement and are refined individ-
ually. While this is efficient, in that no cells are refined unnecessarily, it leads to fairly complicated
tree-like data structures which must maintain nearest-neighbor lists. This can result in a large
amount of overhead in managing the AMR computation.

In contrast, we will use block-structured refinement, in which cells tagged for refinement
are grouped together into blocks, which are then refined in logically rectangular patches. While
this results in some unnecessary refinement, it enables greater efficiency in managing the composite
grid structure, since there is a smaller number of irregular nodes (on the order of one per patch,
rather than one per node), and irregular indexing is confined to coarse-fine boundaries, rather than
potentially every cell. Also, this makes it simpler to separate the implementation of uniform-grid
algorithms from the adaptive aspects of the calculation, which in most cases can be represented as
boundary conditions on the various refined regions. Because most of the calculation can be done

on rectangular arrays of data, it is easier to optimize the bulk of the computation. Advancing
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blocks of cells also makes it easier to refine in time as well as space, by taking smaller timesteps
when advancing refined patches. Unfortunately, this does make the complete adaptive algorithm
more complicated to program, because update operations are performed in two steps: regular grid
calculations on unions of rectangular grids which make up levels of refinement, and calculations on
an irregular set corresponding to the boundary of the union of rectangles at a level of refinement with
the grids which make up the coarser levels of refinement. In contrast, when updating the solution
on an unstructured grid, only one set of operations must be performed, although the unstructured
nature of the mesh requires that they be irregular in nature for all cells in the computational domain.

The refinement strategy we will follow is based on that of Berger and Oliger [19], as extended
for hyperbolic conservation laws by Berger and Colella [18]. In [19], regions marked for refinement
were covered by rectangular patches of refined cells. These patches could be oriented arbitrarily
to better align with solution features like shocks. Along with spatial refinement, their method also
included temporal refinement (“subcycling”) — refined patches were updated using a smaller timestep
than that of the coarse grid. To simplify inter-level communication and boundary conditions, many
later implementations based on this strategy (for example that in [18]) did not orient refined patches
arbitrarily, instead nesting refined patches completely within coarse grid cells, which aligned the
refined grids with the coarse mesh. A variation of this strategy was used by Arney and Flaherty [9]
who used tree-structured block refinements of individual patches of cells.

The basic block-structured refinement strategy of [19] has been applied successfully for a
number of applications. It was applied to gas dynamics calculations in two dimensions by Berger
and Colella [18], and in three dimensions by Bell, et al. [15]. Steinthorsen et al. [58] extended this

methodology to the compressible Navier-Stokes equations. Berger and Jameson [21] and Dudek [34]



CHAPTER 1. INTRODUCTION 6

developed methods for computing steady-state compressible flows in complicated geometry using
block-structured refinement of mapped grids. Skamarock and Klemp [57] implemented an adaptive
method for atmospheric flows based on a compressible flow model which retained the arbitrarily
oriented subgrids of [19]. Algorithms to adaptively compute time-dependent solutions to porous
media flows were developed by Hornung and Trangenstein [40] and by Propp [51].

To compute steady-state solutions to the incompressible Navier-Stokes equations, Thomp-
son and Ferziger [65] used an adaptive multigrid method based on the adaptive multigrid algorithm
originally developed by Brandt [24]. For time-dependent incompressible flows, Howell and Bell [41]
and Minion [48] developed adaptive projection methods which did not refine in time but did enforce
the divergence constraint on the composite solution across all levels of refinement. In atmospheric
modeling, the anelastic equations for atmospheric motion are similar in structure to those for incom-
pressible flow. Clark and Farley [30] and Stevens [59, 60] constructed adaptive projection methods
for the anelastic equations which were fully adaptive in time and space, but which did not enforce
the incompressibility constraint on the composite grid hierarchy, but instead on a grid-by-grid basis.

Finally, Almgren et al. [5] have developed an adaptive projection method which refines in
time as well as space and which enforces the divergence constraint in a composite sense across all

refinement levels. That algorithm is the starting point for this work.

1.1 AMR for Incompressible Flows

Our goal will be to extend the block-structured adaptive mesh refinement (AMR) strategies
developed for hyperbolic conservation laws by Berger and Colella [18] to the incompressible Euler

equations in two dimensions. The addition of local refinement substantially complicates the design
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Figure 1.2: Block-structured local refinement. Note that refinement is by a discrete amount and is
organized into logically-rectangular patches.
and implementation of projection algorithms, because of the need to sufficiently couple the solutions

across interfaces between coarse and fine solutions.

1.1.1 Discretization Issues

Following [18], we will employ nested refinements of block-structured grids along with a
corresponding refinement in time as well as space. In this approach, groups of cells are refined in
logically rectangular blocks, which simplifies management of refined regions. Additional refinement
can easily be nested within existing refined patches, as shown in Figure 1.2.

Using locally refined grids complicates the design of projection methods in many ways. The
algorithm of [18] was intended for the solution of hyperbolic conservation laws; conservation was
maintained by the use of local corrections where fine and coarse solutions meet. Because solutions
to the equations of incompressible flow are also elliptic in nature, additional steps must be taken to

ensure that the method presented in this work respects the appropriate smoothness of these solutions
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in the presence of local refinement.

Special numerical operators must be defined which act on the composite solution across the
different levels of refinement. For example, the choice of the discretization of projection operators
becomes important. In [41] an idempotent projection discretization was used, in which the finite-
difference stencils produced a local decoupling of the computational grid. It was found that this
decoupling had to be respected across the interfaces between coarse and fine regions, significantly
complicating the algorithm.

We will use a non-idempotent projection algorithm, often referred to as an approzimate
projection, which has simpler stencils. Because repeated application of the approximate projection
will not produce the same result as one application, issues like stability of the projection operator
and the choice of projecting the velocity field u or the approximation to % become more impor-
tant. Almgren et al. [5] use a node-centered projection which was developed using a finite-element
formulation; as such, the stability and accuracy of their projection is well understood. We will use
the approximate projection of Lai [44], for which there are fewer analytical results, but for which
there is also a fairly large body of experience.

Refinement in time as well as space complicates the algorithm as well. Since different
regions will be advanced using different timesteps, enforcing the divergence constraint becomes
more complicated. For example, if we are projecting the velocity field, u - n must be continuous
across the interfaces between coarse and fine regions. Since the time-centerings of the velocity on

the coarse grid, u¢, and on the fine grid, uf, can be different due to the different timesteps in coarse

Ou

and fine regions, enforcing this smoothness becomes more difficult. If the velocity field update 7

is being projected, enforcing this smoothness becomes more difficult still.
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Another issue in the design of locally adaptive methods is that of freestream preservation.
In the hyperbolic algorithm of [18], the solution on the coarse grids is updated, and then the solution
on the fine grid is updated, using boundary conditions interpolated from surrounding coarse cells.
In general, after both coarse and fine advances, the coarse solution in regions covered by refined
patches will not be equivalent to the averaged fine solution which covers it. Also, fluxes across
the coarse-fine interface computed during the coarse update will not be equal to those computed
during the fine update. In order to maintain conservation, the fine solutions are averaged onto the
coarse-grid regions, and the flux into the coarse-grid cells adjacent to refined patches is corrected so
that the flux into coarse cells across coarse-fine interfaces is the average of the flux computed across
the coarse-fine interface from the fine side during the fine-cell updates. These corrections ensure
that conserved quantities will be conserved. If the advection scheme is consistent, and there is no
explicit space/time dependency of the flux function, then a passively advected scalar field which is
spatially constant will remain constant as the flow evolves. This property is known as freestream
preservation.

In the case of incompressible flow, the same property of constant scalar fields to remain
constant should be observed. For incompressible flow, however, advective fluxes are computed using
advection velocities which are themselves computed by solving an elliptic PDE during the local
timestep. While averaging fine solutions onto covered regions of coarse grids and correcting advective
fluxes into coarse cells adjacent to refined patches (as in [18]) will ensure conservation, there is no
guarantee that freestream preservation will be maintained, because there is no guarantee that the
coarse- and fine-level advection velocities across the coarse-fine interfaces will be consistent. So,

additional steps must be taken to ensure that the property of freestream preservation is maintained
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in the computation of incompressible flows on locally refined grids.

While the algorithm in Almgren et al. [5] addresses each of these issues, the specifics
of the algorithm are complicated. Many specialized algorithmic pieces are required to enforce the
appropriate smoothness and conservation of the solution. Our approach has been to attempt to
simplify the algorithm to reduce the number of algorithmic components, with the goal of making it
easily extensible to more complicated problems.

This work extends [5] in several important ways. First, we employ a cell-centered discrete
projection operator, similar to the one developed in [44] and used in [48]. Because our algorithm
will require a cell-centered solver for the projection of edge-centered advection velocities and for
addition of diffusion (see, for example, [5]), using a cell-centered projection has the advantage of
simplicity in that only one set of (cell-centered) solvers need be developed. This will make extension
of this work to more complicated problems and geometries much simpler, since the author has
found that construction and extension of solvers in a locally adaptive context can be fairly time-
consuming. Unlike [48], we refine in time as well as space, which means that, as in [5], a set of

synchronization operations must be performed. Also, unlike [48] and [5], we apply the projection to

du

the entire velocity field, instead of to the approximation to %,

which appears to be necessary for
our cell-centered projection when temporal refinement is employed.

Unlike [5], in which levels are synchronized in coarse-fine pairs, we perform multilevel elliptic
solves in our synchronization projection, synchronizing all levels which have reached the same point
in time. Once a multilevel solver has been developed, this is conceptually simpler, and there is

some evidence that synchronization based on multilevel solves are more accurate, at least in the

cell-centered case. Finally, we maintain freestream preservation in a different way. In [5], freestream
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preservation is maintained exactly by a projection of the advection velocity mismatch, followed by
a re-advection step on the coarse level. Then, the corrected advective fluxes are interpolated to
finer levels. In this work, we instead employ a lagged correction based on the volume-discrepancy
formulation used by Acs et al. [1] and by Trangenstein and Bell [66], which is approximate in nature.
In practice, we show that the volume-discrepancy method restricts advection errors to those made in
the course of a single timestep immediately adjacent to coarse-fine interfaces. In contrast, without
this correction, advection errors accumulate and are advected by the flow, corrupting the global
solution.

While the algorithm in [5] solves the incompressible Navier-Stokes equations, this work will
solve the equations of inviscid incompressible flow, leaving extension to the viscous case for future
work. Since the stability issues involved in implementing projection methods for incompressible
flow are more difficult in the inviscid case, the inviscid equations are a sufficient test for the new

projection discretization and algorithm presented in this work.

1.2 Thesis Overview

In this thesis, a second-order adaptive projection method for the incompressible Euler
equations in two dimensions is presented and results are presented to demonstrate its effectiveness.
Chapter 2 describes the single-grid implementation of the projection method we will use.
First, the projection method is introduced, and some background is presented, along with the con-
struction of the various discretizations of the projection used in this work. Then, our single-grid
strategy of point relaxation coupled with multigrid acceleration for solving Poisson’s equation is

described and explained. Finally, the single-grid version of the projection algorithm used in this
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work is outlined and its convergence is demonstrated .

In Chapter 3, our adaptive strategy for numerically solving Poisson’s equation on an adap-
tive hierarchy of refined grids is presented. Special care is given to the issues of coarse-fine matching
conditions and the construction of composite operators. This solution strategy is then extended to
the special cases of solving on individual levels and groups of levels which do not comprise the entire
computational domain. Because the solution of Poisson’s equation is central to the the projection
method, we also explore other strategies for solving the equations in the context of AMR, with an
eye toward the eventual implementation in the time-dependent adaptive projection method. Finally,
an error analysis of the adaptive solutions is performed, to determine the sources and size of the
errors in this method.

In Chapter 4, the single-grid projection algorithm of Chapter 2 is extended to an adap-
tive framework. First, the issues raised by the addition of local temporal and spatial refinement
are explored, including subcycling (refinement in time), coarse-fine boundary conditions, the con-
struction of composite and level-based operators, and the synchronization operations which must be
performed to maintain the proper smoothness of the solution for conservation and accuracy. Then
the recursive timestep on a level in the multilevel algorithm is presented. Finally, the method used
to initialize the computation at the initial timestep and after a regridding operation is outlined.

Chapter 5 describes the various methods used to estimate the error in a solution in order
to decide where to place refined patches. In this work, the grids can be pre-defined by the user, the
user can provide a solution-based error criteria, or Richardson extrapolation can be used to estimate
the local truncation error of the solution to determine which cells to refine. Also, the method used

to group the “tagged” cells into clusters and create a new grid hierarchy is described.
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Results of test problems used to validate the method are presented in Chapter 6. Several
test problems were selected to demonstrate the convergence and performance of the method. In
particular, we demonstrate that flow features are not significantly corrupted by passage through
a coarse-fine interface, that the volume-discrepancy correction is an effective tool for controlling
advection errors, and that the use of local refinement with this algorithm allows attainment of the
accuracy of the equivalent fine-grid computation.

In Chapter 7, issues involved in designing and implementing the adaptive algorithm in
software form are discussed. Extensive use was made of the object-oriented functionality of the
C++ programming language, along with the numerical optimization of FORTRAN 77. Also, we
used BoxLib [52], a C++ class library designed to assist in the implementation of finite-difference
on logically rectangular grids.

In the final chapter, we summarize what was learned in the course of this work and present

conclusions based on the final results.
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Chapter 2

Finite Difference Methods on a
Single Grid

This chapter will describe the single-grid projection method used to solve the Euler equa-

tions in this work.

2.1 Finite-Difference Notation

In a finite-difference computation, the spatial domain is discretized into a finite number of
cells; the goal of the computation is to approximate the exact solution in each cell. In a consistent and
stable computation, the more cells in the computation, the better the approximation. A complete
description of the theory and practice of finite-difference methods and their place in the greater
framework of numerical mathematics is obviously far beyond the scope of this work; the reader is
referred to a basic text in numerical PDE’s, such as [62].

We will use a regular structured Cartesian mesh in this work. The two-dimensional domain
 is divided into cells by placing a regular rectangular grid over the domain. For a rectangular

domain extending from (x;o,¥10) t0 (Thi, Yns), this is simple — in two dimensions, there will be n,
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Figure 2.1: Basic Cartesian finite-difference grid. Note that Az # Ay in this case.

cells in the z-direction, and n, cells in the y-direction. In general, we will index the cells by (7, j) =
(0..ny — 1,0..ny — 1). The cell spacing is denoted as (Az,Ay) = (ﬁ—:, i—z), where L, = (zp; — z10)
and Ly = (yni — Y10) - See Figure 2.1.

The boundary of Q will be denoted as 012; the boundary of the physical domain will also
be referred to as a physical boundary.

Quantities defined on this Cartesian grid may be cell-centered, edge-centered, or node-
centered. A quantity is said to be cell-centered if it is defined at the center of the finite-difference

cell; ¢i; = ¢z, y5e!l), where

1 o1
(@i y5 ") = (210 + (i + 5) A7, 410 + (7 + 5)A).

A quantity is said to be node-centered if it is centered at a node on the computational grid:
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N 2 F

-+

Figure 2.2: Centering of finite-difference quantities. ¢ is cell-centered, 1 is node-centered, and F* and F¥

are edge-centered
N1 1 =mn(x"ede ynode) where
i—5,0—3 i—109j-1 /)

(@09, ;oY) = (210 + Az, 1o + jAY).

— = y L
- A

Quantities which are centered along the edges between cells are called edge-centered. In two dimen-
sions, an edge-centered quantity is either centered on an z-edge, where it is centered between the
(7,7) and (i —1, ) cells on the grid, or it is centered on a y-edge between the (i,7) and (i, — 1) cells.

In other words, the z-edge quantity F" , i is centered at (m?f‘ie,y;e”), while the y-edge quantity
2 2

F!._, is centered at (zgell y;wdf). See Figure 2.2.

> 2 )
2.1.1 Ghost Cell Implementation of Physical Boundary Conditions
Boundary conditions will be enforced with the use of ghost cells, imaginary cells outside

the computational domain which will contain appropriate values for ¢ (see Figure 2.3). This has

the advantage of computational simplicity as well as ease of programming, since it is often possible
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Figure 2.3: Ghost cells outside computational domain. Solid cells are within the computational domain,

while dashed cells are ghost cells outside the computational domain used to enforce boundary conditions.

to use the same discretization of the operator both in the interior of the domain and for cells along
the boundary. The ghost cell values will be set using appropriate discretizations of the boundary
conditions. For Dirichlet boundary conditions, the ghost cell value can be computed as (using the

left boundary as an example):
¢-1,j = 2¢BC — Po,5- (2.1)

where ¢p¢ is the value of ¢(xy,,7) specified for the inhomogeneous boundary condition. This is the
result of a linear extrapolation of ¢ through ¢pc on the physical boundary, and so is O(h?) for the

value of ¢(—2Az,y;). For homogeneous Dirichlet boundary conditions, this reduces to:

-1, =—¢o,; (2.2)

We can also represent an inhomogeneous Dirichlet boundary condition by the third-order

extrapolation formula;:

8 1
-1, = §¢Bc —2¢ ; + §¢1,j- (2.3)
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For Neumann boundary conditions, the ghost-cell value is given by:

0
P—1,j = ¢o,j — Am(a_i))Bc (2.4)

where % pe 1s the normal derivative specified by the Neumann boundary condition. For homoge-

neous Neumann boundary conditions, (%)BC is 0. Finally, at times we will want to extrapolate

to compute boundary conditions. We will use either linear extrapolation:

$-15 =200, = P1, (2.5)
or second-order extrapolation:

¢-1,5 =30 — 3015 + P2,5- (2.6)

2.2 Poisson’s Equation

Poisson’s equation appears in the descriptions of many physical problems, such as fluid dy-
namics, and electrodynamics, and will be necessary for our solution algorithm for the incompressible
Euler equations. Because of the simplicity of our problem (for the constant-density Euler equations
we will be restricted to the constant-coefficient case), we will be able to employ fairly simple solution
techniques.

We wish to solve the constant-coefficient Poisson’s equation:
Ap=V-Vy=p on(, (2.7)
with boundary conditions:

e, ) 52 +b(w ) = f(z,y) on 00 2.
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Note that if a is zero, we are solving a problem with Dirichlet boundary conditions, while if b is zero
we are solving a problem subject to Neumann boundary conditions.

For simplicity, we will assume a uniform Cartesian grid in two dimensions, with Az =
Ay = h. The extension to a non-uniform mesh is straightforward. (See, for example, [36].) ¢; ;
will be the discrete approximation to ¢(z;,y;). ¢ and p will be cell-centered, so that ¢; ; represents
the solution at (z,y) = (h(i + %), h(j + 3)). We will use the standard 5-point discretization of the

Laplacian operator:

(Lé)i, = (iv1j + i1+ ¢;‘l,g+1 + ¢ij—1 — 4¢; ;) (2.9)

For the time being, we will restrict our discussion to homogeneous Dirichlet boundary conditions, ¢ =
0 on 02; this corresponds to the boundary condition (2.8) with a = 0, b = 1, and f = 0. The physical
boundary conditions will be enforced using the ghost-cell formalism described in Section 2.1.1, and
we will approximate these boundary conditions using (2.1). We will use multigrid accelerated point
relaxation to solve this equation, because the extension of multigrid to the locally-refined case is

straightforward and well-understood.
2.2.1 Truncation Error Analysis
We define ¢ ; as the exact solution to the continuous problem, evaluated at the cell-centers:
bi; = (@i, y;) (2.10)
Then the truncation error 7; ; is defined as:
Tig = Pig — L(9)i, (2.11)

where L is the discretization of the Laplacian operator given in (2.9).
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It is not difficult to show, using Taylor expansions, that

O(h?) for interior cells
Tij = (2.12)

O(1)  for boundary cells: ¢ =0,i= (n, — 1), j =0,0r j = (ny, — 1)
The truncation on the interiors is O(h?) due to a cancellation of errors inherent in the centered-
difference discretization of L. As we see, there is a loss of accuracy at the boundary, in part because
we can no longer take advantage of these cancellations, and in part because of the lower-order nature
of the boundary condition discretization in (2.2).

If we define the solution error &,
§ij = bij — b5 (2.13)
then the solution error satisfies the following error equation:
Le=r. (2.14)

The solution error £ is O(h?) at all points on the grid, despite the lower-order approximation at the
boundary. This is because, for smooth solutions, it is possible to maintain global accuracy even when
using a less-accurate discretization on a set of cells which has a lower dimension than the problem
space. In our case, the problem space is two-dimensional, while the reduced-accuracy discretization
on the boundary is on a one-dimensional set of cells. In general, we can lose one order of accuracy
on a set of cells one dimension less than the problem space. This would imply that we can have an
O(h) boundary condition and still maintain global second-order accuracy in our problem. This can
be most easily understood using the modified-equation analysis of Johansen [43].

In that approach, we view the discrete solution as the solution to a continuous problem
with a piecewise-constant charge distribution in each cell. Since Poisson’s equation is linear, we

expect that we can separate the solution error ¢ into the sum of contributions to the total error
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from the source in each cell. We define ¢(0) as the solution error induced by 7(¥) which is an

approximation to the truncation error 73 integrated over the cell volume:

¢k = (phy=1pkD) (2.15)
(Ic'l) _ { hQTiJ' if (l,]) = (k}, l)
v 0 otherwise

Given the interpretation of 7(*) as a charge of strength h27y, located at (zg,y;), we expect that
¢*D = O(h?) 7. (2.16)

The total error at point (4, j), & j, would then be the sum of the errors induced by the truncation

error in each cell in the domain:

Gj= > f,-(,kjl)- (2.17)

kleQ

In interior cells, this would be 7; j x h? = O(h*). If the boundary condition discretization is
O(h), then in the boundary cells, this would be TZ?dTy x h? = O(h?). There are O(7z) interior cells,
for a total contribution of O(h?) to &, while there are only O(+) boundary cells, so their contribution
to £ is also O(h?). So, using boundary conditions for which 7 = O(h) on the physical boundary still
leads to a second-order accurate method.

For the case of Dirichlet boundary conditions, one obtains a sharper result: if cell (k,1) is
adjacent to a physical boundary, then £%) = O(h3)r*!. To leading order in h, the field induced by
70 is that induced by a charge 74 ;h?, plus that induced by an image charge of strength 73 ;A2

centered at the ghost-cell (—1, ) (for the left boundary). From potential theory, the effect on the

solution of a dipole source can be approximated by:

€d) ~ T1ijxh®x[In(d+ Az) —In(d - Az)]

~ O(h®) x O(h). (2.18)
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Once again, there are O(%) boundary cells, so the effect of the boundary cells on the solution error is
actually O(h?), one order less than that of the interior cells. From this, it follows that one can use a
boundary condition for which 7 = O(1) at boundary cells, but still maintain second-order accuracy
in the solution. In particular, the boundary condition represented by (2.2) leads to a second-order

accurate method.

2.2.2 Point Relaxation

It is well known and documented in the literature that solving the resulting system of
equations directly is an O(N%) operation, where N = nyn, is the number of grid points. This is
computationally expensive; instead, we will use an iterative scheme. Rather than solve the system
of equations exactly, we will compute a series of (hopefully) better approximations to the solution,
starting with an initial guess ¢°, and continuing with the nth iterate {¢"},>1. We continue until
the error in our solution is less than a given tolerance.

One way to construct an iterative method is as an associated unsteady problem for gzNS, where

the steady state solution (‘Z—‘f = 0) is the solution:

0 -
3t =Lo—p (2.19)

Defining a step-size A and using forward Euler, we can discretize this associated problem as:

QNW'H = sz + /\(nggn — p)i,j (2.20)

2y

It is obvious that this method is linear, and will also leave the exact solution unchanged.
This still leaves open the question of whether this will converge to a steady-state solution,

and if so, how to select the proper \. One way to analyze this method is to place the problem in
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residual-correction form. We first define the residual R:
Res™ = p — L™ (2.21)

This is an indication of how well we are solving the equation — at steady state, when we have reached
the solution to Poisson’s problem, the residual will go to zero. We can also define §™ as the error in
the nth iterate of ¢:

07 = 9p; — ¢ (2.22)
Using equations (2.21) and (2.22) in (2.19), we see that the error satisfies the heat equation:

25

5 = L¢ (2.23)

We would like to see how § behaves. For stability and convergence we desire that § — 0 as t — oo.

In the case of (2.20), we would like to show that for the operator L:
Lé = (I 4+ AA)6, (2.24)
(where I is the identity operator) that the norm of ¢ is reduced:
||Ld]] < []6]]- (2.25)

In the case of doubly periodic boundary conditions, we can use Fourier analysis to examine
the behavior of §. To avoid confusion with i = /—1, we will temporarily replace the indices (i, j)

with (jz,jy). Using the discrete Fourier transform:

0 gy = Z Z ay, ag, 2" (keethyiv)h (2.26)
ko=—"+1 k,=— "2 41
If we apply a Fourier transform to the operator L,
(L8)judy = D, Y aar,o(ke, k)T eI I (2.27)
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where the symbol o(k,, ky) represents the effect of the operator L on the error with a wavenumber
(kz,ky). For stability, o(ks,ky) < 1 for all wavenumbers k, and k,. Note that we can relate
the finite-difference notation and Fourier space notation by recognizing that we can define a shift
operator S to represent a shift by one on the finite-difference grid. So, if we are considering cell
(Ja»>Jy), cell (jz +1,7,) will be represented by S,. Likewise, cell (j.,j, — 1) will be represented by

—Sy. In Fourier space, this becomes a multiplication:

2241 2t
n _ 278 (ko (jot+1)+kyiy)h
Sz((sjm,jy) = E E Ak, Ok, € (k= ( )+kyjy)
==+l =—"F+1
1 o+l
— E : E : ak, aky eanhkw €2ﬁz(kw]m++ky1y)h (228)

ka=—28+1k,=—"F +1
So if we consider a single wavenumber component (k;,k,), then the shift operator S, is just a

2mik=  The y-direction shift is similar, as is the negative shift.

multiplication by e
To understand the behavior of our operator L(d), we will examine its effect on a single

wavenumber component of the error. If we use the standard 5-point discretization of the Laplacian,

then
! S \
L), j, = Z Z ag, ar, [1+h2( 2mihke | 2mihky | o —2mihky | —2mhk, _4)]62ﬂi(kmjm+kyjy)h
=—S+lg,=—"Y+1
(2.29)
So, the symbol is:
A , . ‘
U(km,k}y) = 14+ h2[ 27rzhlcm + eZﬁlhky + 6727rzhkw + efzﬂhky _ 4]
A
= 1+ ﬁ[2cos(27rhkw) + 2cos(2mhk,) — 4]. (2.30)

The quantity in brackets will never be positive, so to ensure |o| < 1 for all (k;,k,), we require



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 25

(looking at the worst case, where cos(2whk,) = cos(2whk,) = —1):

A< — (2.31)

to ensure that all Fourier modes of the error eventually decay to zero.
Since o is wavenumber-dependent, different wavenumber components of the error will be
damped at different rates. First, look at the slowly varying low-wavenumber components of the

error. Performing a Taylor expansion of (2.30) around (k,, ky) = (0,0) yields:
(ko ky)| (ko —0,k,—0) & 1 — AT (K2 + k7). (2.32)
Since A < %2 = O(h?), this becomes
0 (kzs ky)| 5y =0,k,=0) & 1 — Ch?, (2.33)

where C'is a constant. So, the low-wavenumber error will decay slowly. On the other hand, if we look

at the highest wavenumber present, which is (k.,ky) = (%=, %) (remembering that h = t = nl—y),

then cos(2mhk,) = cos(2mhk,) = —1. In this case,
o(—,-L)=1-—=. (2.34)

IfA= %2, then the highest wavenumber mode will be damped completely in one iteration. So, this
method is extremely efficient at damping high-wavenumber components of the error, while damping
lower wavenumber components of the error much more slowly.

Note that in our present scheme, attempting to accelerate convergence to steady state
%2, corresponds to

by taking the maximum allowable value for the relaxation parameter, A =

replacing the value of d;, ;, with the average of its four neighbors d;,41j,,05,-1,5,,9;.,7,+1, and

z5Jy
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+1 -1 +1 -1 +1

Figure 2.4: Residual pattern which causes stalled convergence with point-Jacobi iteration

dj,.j,—1- Unfortunately, straightforward application of this scheme using the 5-point discretization
of the Laplacian operator suffers from a local decoupling of solution values, resulting in a lack of
convergence for the case of a high-wavenumber error (Figure 2.4) . In this case, the values of +1
and -1 simply flip back and forth for each iteration, and the method does not converge to a steady
state solution.

To avoid this problem, we instead use Gauss-Seidel with red-black ordering (GSRB) it-
eration. Instead of applying point-Jacobi iteration to each cell in turn, we apply two half-step
operations. We divide the cells into two groups in a checkerboard manner. First, we relax on the
“red” cells (where i + j is even) to get an intermediate value 6"t3 . Then we relax on the “black”

cells (where i + j is odd) using 6"*2, (Figure 2.5):

ntl 63'27]'” if i+ j odd
2 = ELRE L LI [ R'Y
JzsJ n h2 (%at+ly Jz—1.4y Ja,dy+1 T %e,iy—1 Jz.iy o e - .
v o i+ s — Resj, j,) ifi+jeven
ntg nt3 ntd ntd n+d
ntd | p2 %a 11,5y T =1,y TOhn iy 41050 5y =1 405, 5 .
;L—‘,—jl = 6.7:: 7jy + T( 2 - Res]mv]y) lf 1+ J 0dd(235)
xHrJy n+%

s if i + 7 even
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Figure 2.5: “Red-Black” ordering of cells for GSRB iteration

This solves the decoupling problem for the error shown in Figure 2.4, instead replacing it with a
uniform (low-wavenumber) error of either 1 or -1.

By itself, use of GSRB is not sufficient to accelerate convergence significantly over point-
Jacobi iteration, since for low wavenumber components of the error, ¢ = 1 — O(h?). However, it is

very effective when combined with multigrid acceleration, which is described in the next section.

2.2.3 Multigrid Acceleration

We have seen that GSRB iteration is very effective at damping high-wavenumber compo-
nents of the error, while it is less effective at reducing lower wavenumber components of the error. In
fact, if A = %2, high-wavenumber error is replaced by low-wavenumber error by the GSRB iteration.
To accelerate convergence, we will employ multigrid acceleration. This technique, originally devel-
oped in the 1960s by various researchers [24], has received much attention. A good introductory
reference is Briggs [25] or Wesseling [69]. Brandt [24] includes a brief overview of the history of

multilevel and multigrid methods. The basic concept is that what constitutes a “high” wavenum-
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ber is mesh-dependent. An error mode which is a low-wavenumber error on a fine mesh will be a
high-wavenumber error on a coarser mesh. For a given finite-difference grid €2, we can define a series
of coarsened grids QF which cover the domain. In our construction, each successive grid coarsening
will be a factor of two coarser than the last, so that A*~1 = 2h*. Note that these coarsenings exist
independently of any existing AMR grid hierarchy.

The strategy will be to employ a relaxation scheme which effectively damps high-wavenumber
components of the error, such as GSRB, on a solution. Then, the solution is restricted to a coarser
grid using a restriction operator Rﬁfl and relaxed on this grid; applying the relaxation on this mesh
will damp a lower wavenumber error, which has become a high wavenumber error on this mesh. This
process is continued recursively until a coarsest level is reached, where the problem can be solved
inexpensively. Then, the corrections on the coarser levels are interpolated back into the finer level
solution with an injection operator If |, followed by further relaxation on the fine grid to eliminate
any high-wavenumber error induced by the interpolation of the coarser corrections. This cycle is
then repeated until the residual is sufficiently damped. The multigrid algorithm used in this work is
outlined in Figure 2.6. v is the number of smoothing iterations performed before coarsening, and
vy is the number of smoothing operations performed after the interpolation steps.

Because of the simplicity of the problems we are solving, we can use simple averaging for the
restriction operator and piecewise constant interpolation as an injection operator. More complicated
schemes exist, such as Black Box Multigrid [42], and might be more efficient, but since the simpler
methods have worked sufficiently well for our problem, we have not explored these options in this
work.

As an example, Figure 2.7 is a plot of residual as a function of multigrid iteration for solving
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MG()
Resh™ ™™ = p™*% _ [RMA¥ (k"X
do while (iter < mazIter and ||Resk" || < tol)
iter++
MGCycle(d)’“MAX , p’“MAX)
Resh™ ™™ = ™" _ pRMAY (gh™MAY)
end do
end MG

MGCycle (¢*, p*)
for i =1,1n
¢* < GSRB(¢", p*)
end for
Res* = p— L¥(¢*)
if (k >0)
pFt = Ry~ (Res")
1 =0
MGCycle (6*!, Res*—1)
¢F =" + I (5" 1)
for i = 1,15
¢* « GSRB(¢", p")
end for
else
BottomSolve (¢°, p°)
end if
end MGCycle

Figure 2.6: Pseudocode for a multigrid V-cycle

29
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Max(Residual) vs. Work Units
Max(Res)

(0]
4

1e+01 —

GSRB w/ MultiGrid

1et00 = ¢

le01 |- |
o2l | -

el i B

1e-06 — —
1e-07 — —
1e-08 — —
1e-09 — —

1e10 u

le11 L1 | | | ! L #Work Units
0.00 50.00 100.00 150.00 200.00 250.00

Figure 2.7: Max(Residual) vs. work units for a test problem

a sample problem in which the right hand side is three Gaussian sources (shown in Figure 3.11) with
homogeneous Dirichlet boundary conditions, solved on a 32x32 grid. A work unit is the amount of
work equivalent to one iteration at the finest level, neglecting interpolation and averaging. The line
labeled “GSRB” is a plot of the infinity-norm of the residual as a function of work units when simple
GSRB iteration is applied (in the case of GSRB, 1 work unit is 1 GSRB iteration). The line labeled
“GSRB w/ Multigrid” shows the maxnorm of residual when GSRB with multigrid acceleration is
applied. In this case, 2 GSRB iterations are performed on the way up and 2 more on the way back
down on each level. (In the notation of Figure 2.6, this corresponds to v; = v, = 2.) In this case,
each multigrid cycle corresponds to 4 iterations on a 32x32 grid (two on the way down, and two
on the way up), 4 iterations on a 16x16 grid, 4 on a 8x8 grid, and so on. So, in this case, each

multigrid v-cycle represents 5.33 work units. Even given the added expense of a multigrid cycle over
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that of simple iteration, it is obvious that multigrid acceleration enables rapid convergence for our

test problem.

2.3 The Incompressible Euler Equations

The evolution of inviscid fluid flows can be described by the Euler equations:

ou 1
_ 1Dp
V-ou = D (2.37)

where u is the fluid velocity vector (u,v)7, t is the time, p is the fluid density, and p is the pressure.

The notation DQt represents the material derivative, which in an Eulerian frame of reference is:

D 0
== (V). (2.38)

The evolution equation for a passively advected scalar in incompressible flow is (we have exploited
the fact that V-u =0):
0s

a5t +V-(us) =0 (2.39)

For very low Mach number flows, the fluid becomes incompressible, which implies that the material
derivative of the density is identically zero. In this case, the conservation of mass equation (2.37)

reduces to a constraint on the velocity field,
V.-u=0. (2.40)

In our case, we will make the further assumption that the density p is constant (extension of this
work to the variable density case is straightforward). Since it is a constant, we will without loss of
generality assume that p = 1 identically. The reader is referred to a standard text on fluid mechanics

(for example [13]) for the conditions where these approximations are appropriate.
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2.4 Projection Methods

While equations (2.36) and (2.40) form a well-posed set of differential equations for the
fluid system, it is not clear how to construct a numerical method for their solution. Enforcing the
constraint (2.40) will be problematic, and there is no evolution equation for the pressure.

The projection method, originally conceived by Chorin [29] provides a way to evolve a
solution to the incompressible Euler equations in time. It is based on the Hodge-Helmholtz decom-
position, which uniquely decomposes any vector field w into a divergence-free part, uy, and the

gradient of a scalar V¢:

w = ug+ Vo

where ug-n = 0 on 090 (2.41)

This is an orthogonal decomposition. If we define the inner product:

(ud, V¢> = / uq - V¢dV, (2.42)

Q
then (uq, Vo) = 0.
The decomposition can be performed by solving for ¢ in the following partial differential

equation:
V-V¢p = V-w (2.43)
Vo-n = w-n on 0.

Once we have solved for ¢, then we can extract ug by subtracting the gradient of ¢ from the original

vector field:

u; =w—Vo. (2.44)
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We can now define a “projection” operator P, which given a vector field will return the

divergence free piece ug:

P(w) = ug. (2.45)

To obtain the gradient piece,

(I - P)(w) = Vo, (2.46)
where I is the identity. From equations (2.43) and (2.44),
P(w) = ([ - V(A—l)v-)w. (2.47)

The projection operator has several important properties. First, it is idempotent, i.e.

P?(w) = P(w). Second, the projection is symmetric,
(w, P(w)) = (P(w),w),

or P = PT. Also, it is a linear operator, and is norm-reducing, in the sense that ||P(w)|| < ||w]|.
If we apply the projection operator to the incompressible Euler equations (2.36) and (2.40),

then the divergence constraint (2.40) is no longer a separate equation — the constraint is enforced

by the projection. If u(t) is divergence-free, then %—‘; is also divergence-free, in which case, P(%) is

simply %—‘t‘. With this in mind, we can write:

Oou
5= P(—(u - V)u— vp). (2.48)
We can then discretize this in time as:
L AtP(—(u -V)u-— Vp)

= u'- AtP(—(u : V)u), (2.49)
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since P(Vp) = 0. From this, we can infer that the pressure is not an independent variable, but
rather is determined by the requirements of the divergence constraint. In the context of the Hodge-
Helmholtz decomposition (2.41), when we project the update to the velocity field in (2.49), the
gradient of the pressure and the V¢ term in (2.41) are the same. This is the basis for the projection
method.

As formulated by Chorin [29] and extended by Bell, Colella, and Glaz [16], the projection
method is a predictor-corrector method which predicts an intermediate velocity field u*, which is

n+1

a first approximation of u”*+. The intermediate velocity u* is then “projected” onto the space of

divergence-free vectors to produce u™t!.

uw = u"-At(u-V)u (2.50)
u"t = P(u")

Vp = (I-P)u*

In this basic example, we have described how a projection method for incompressible flow
can be formulated. Note that the details of the spatial and temporal discretizations are left unspec-
ified. There are many different versions of the original projection method in use, with a number of
discretization and algorithmic choices. These will be discussed in more depth in subsequent sections.

The basic issues which must be dealt with are the discretization of the projection operator P
and the discretization of (u-V)u used in the predictor step. We will use the approximate projection
of Lai [44], because of its simplified linear algebra. To compute the advective terms, we will use the
formulation of Bell, Colella, and Glaz [16], as extended by Bell, Colella, and Howell [17], which uses
a lagged pressure gradient, and upwinding in the velocity predictor to achieve second-order accuracy

in time.
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Figure 2.8: Edge-centered velocity field

2.5 Discretizing the Hodge-Helmholtz Projection

In the previous section, the basic projection method proposed by Chorin [29] was outlined,
while the details of the spatial discretization was left unspecified. In this section, we will outline the
approach we will take in constructing a projection method which we will later extend to an AMR,

algorithm.

2.5.1 The Discrete Projection

One possible discretization, known as the MAC (for Marker and Cell) [38] projection, is
a logical result of a edge-centered velocity field u®¥¢, in which normal velocities are defined at
each cell edge (see Figure 2.8). For this reason, we will also refer to the MAC discretization as an
edge-centered discretization. Given a velocity field defined at cell edges, we define the cell-centered

discrete divergence as:

(Du);j = —22 2 4 = (2.51)
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This discretization is incomplete without specification of the physical boundary conditions. The
boundary condition on the edge-centered velocity field will be the physical boundary condition on
the normal velocity at 0f2. In the case of solid walls, this will be u-n = 0 on 99.

We can also define an edge-centered discrete gradient formula operating on a cell centered

variable ¢ as:

b1y — Gij Pt G141 — Qi1 — Pic1j 1T

Gy = (A 1Ay ) (2.52)
Gir1gr1 T hir1o1 — i1l — Pic1i-1 Digrl — PigT

(G¢)i,j+% - ( AN > Ay ) .

Following the approach in [44], the boundary condition on the gradient, regardless of the physical
boundary condition, is quadratic extrapolation of ¢, which is equivalent to linear extrapolation of
Go.

In this case, both D and G are second-order centered-difference operators. The operator
L = DG is the standard five-point Laplacian operator, and the application of the projection is
equally straightforward. First, solve

L¢ = Du?9¢ (2.53)

for the cell-centered ¢. From (2.43), it is apparent that the proper physical boundary condition on ¢
is g—z = w-n. For the case of solid walls, this becomes a homogeneous Neumann boundary condition.
So, when solving for ¢, we will use the ghost-cell implementation of the Neumann boundary condition
in (2.4) Further discussion of the boundary conditions for the projection operator is presented in
Gresho and Sani [37], and in E and Liu [35]. We then correct the edge-centered velocity field with

the gradient of ¢:

u?de = ued9e _ Go. (2.54)
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So, the projection operator looks like:

P=1-G(L)™'D. (2.55)

While L is not generally invertible, it is invertible on the range of D. This discretization has the
advantages of second-order accuracy, and it is simple to implement and generally well-behaved. It
is exact in the sense that it maintains in a discrete way the properties of the projection operator
outlined in Section 2.4, i.e. P2 = P and P = PT.

Unfortunately, we would prefer to work with a cell-centered discretization for u and (u -
V)u rather than one which is edge-centered. We would like to take advantage of high resolution
methods developed for the advection-diffusion equations, which generally require that variables be
cell-centered. Also, in the presence of irregular geometries, Cartesian grid methods are much easier

to construct with a cell-centered discretization.

2.5.2 Cell-centered Discretization of the Projection

Efforts to formulate an exact discrete projection for cell-centered velocities were largely

unsuccessful. We can use the centered-difference operators

(D“n);; = ui+1’jA_xui_1’j + Ui’j+1A_yvi’j_1 (2.56)
(GO, = (¢i+17j2;;5)i71,j7 ¢i,j+12;;)i7j71 ) (2.57)

Boundary conditions for these cell-centered operators will be similar to those used in the edge-
centered case. For the divergence operator, we will use the ghost-cell representation of the physical
boundary condition. For solid walls, the homogeneous Dirichlet boundary condition u - n is repre-

sented using (2.2). Since ¢ is still cell-centered, physical boundary conditions for the gradient will
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Figure 2.9: Decoupled grids created by the exact DG operator

be similar to those used in the edge-centered discretization: we will use a quadratic extrapolation
of ¢ to fill ghost cells before computing the cell-centered gradient operator.

The corresponding projection, following equations (2.51) through (2.55), is
PYC 41 -GYY(DYCGCY)"1 DY, (2.58)

While this discretization produces an idempotent projection, it is not well-behaved. The stencil
for DCCGCC produces a decoupling of the grid, in which there are four separate grids which are
only coupled together through boundary conditions (Figure 2.9). This decoupling has been shown
to cause problems when there are source terms present, and makes implementation of fast linear
algebra techniques such as multigrid difficult [44, 55]. Also, Howell and Bell [41] report significant
complications when implementing the decoupled stencil across coarse-fine interfaces.

Strikwerda [61] proposed an exact projection which used non-symmetric operators. While
this eliminated the decoupling of the grids, it resulted in more complicated linear algebra which

proved computationally expensive to implement and suffered from a lack of robustness in the presence
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of large density gradients [44].

In response to these difficulties, a non-idempotent discretization of the projection was devel-
oped by Almgren, Bell, and Szymczak [4]. In this approach, we replace the badly-behaved D¢CG¢“
operator with an approximation to the Laplacian operator L which has better properties. The ap-
proximate projection developed in [4] was based on a finite-element formulation, which resulted in
a node-centered pressure. The cell-centered discretization we will use was developed by Lai [44]. In
this case, we will employ second-order approximations to all the operators involved, using the D¢
and G from equations (2.56) and (2.57), but replacing the decoupled Laplacian of DC“G““ with

a more standard discretization. In our case, we will use the standard five-point Laplacian operator

of (2.9), so the projection operator will be:
P=1-G°“(L) D% (2.59)

Analysis of this projection operator by Lai [44] has shown that it is a second-order accurate operator.
Note that the cell-centered operators can also be constructed with the edge-centered op-
erators using appropriate averaging from edges to cells and from cells to edges. First define the

appropriate averaging operators:

u-+;7~+u-_;7- 'U-7~+;—|—’U-7-_;
(AvP )y = (LRt ed )T, (2.60)
which averages edge-centered quantities onto cell centers, and
CSE Pit1,j + Pij
(A7), = ——5— (2.61)
QZS',' 1_|_¢).7.
(AUC_)EQS)i,jJr% = 71J+2 oL

which averages cell-centered (vector) quantities to cell edges. Then, the cell-centered operators
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defined in equations (2.56) and (2.57) can be written as:
Du = D(Av“7Pu) (2.62)

and

GC¢ = AF9G0, (2.63)

respectively. In this case, we can rewrite the approximate projection (2.59) as:
P=1—-AP7CG(L)"' DAY P (2.64)

The discretization of (2.64) is not idempotent, P? # P, since L # D“G®“. Non-
idempotent discretizations of the projection are often referred to as approximate projections. Stability

and consistency of the approximate projection in (2.64) were shown in [44].

2.5.3 Different Projection Formulations

It was noted in the last section that exact projections for cell-centered variables are not
well-behaved, and the approximate projection was introduced as an alternative. In practice, the form
of the projection is not the only design choice. We must also determine what is being projected.
There are four main variations. For idempotent discretizations of the projection, the different
formulations would be equivalent. However, since we are using an approximate projection, choice of
the formulation to use has an impact on the performance of the method.

We denote the discrete approximation to the advective term (u-V)u as N™t2. The first
and simplest version of the projection is the pressure formulation, in which the projection will return

the estimate of the latest pressure, through a projection of the entire velocity field:

1. u™ =u" — AtN™+3
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2. Solve Lp"*t3 = L D(u™)
3. "t = u — AtGp’H'%.

A variation on the first formulation is known as the pressure-incremental formulation, since

the projection actually returns an increment to the pressure field, 6™:
1. u* = u" — A{(N™Fz + Gpr—3)
2. Solve L™ = ﬁD(u*)

3. utl = u* — AtG"

Note that we discriminate between the use of u* and u** to denote the intermediate velocity field,
in an attempt to be consistent with previous definitions of u* in the literature, for example, those in
[5, 44]. We will use u* to refer to the intermediate velocity field which includes the effect of Vphz,
while we will use u** to denote the intermediate velocity field computed without the pressure term.
In both of these algorithms, we are projecting a prediction of the new velocity field. If the

old velocity u™ is divergence-free, it is also possible to simply project the update to the velocity
field, which is the predicted %—‘t‘. As before, this can be done in a pressure formulation:

1. u*™ = u" — AtN"*3

1 ®%_
2. Solve Lp"*tz = D(%—7x*-)

3. u"tl = u** — AtGpte,

or in a pressure-incremental formulation:
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1

1. u* =u” — A{(N"T3 + Gpn~3)

2. Solve Lo"™ = D(*2°)

3. utl = u* — AtG"

An analysis of these four formulations is presented by Rider [54], who concluded that for

du

Si» because of the

approximate projections, it is better to project the velocity field, rather than
error due to the approximate projection which remains in u”. This error can accumulate over many

timesteps. Also, any errors in the initial state will remain undamped by the schemes which project

“*A_t“" . However, both the single-grid algorithm of Lai [44], and the AMR, algorithm of Almgren, et

al. [5] project ®£1" with success.

Our algorithm will be based on the pressure form of the projection of u**, in large part

because of the extra demands of the adaptive algorithm.

2.6 Single-Grid Algorithm

In this section, we will present the single-grid version of the algorithm, which will advance
the solution u and s, where s is a passively advected scalar concentration field, from time ¢" to time
t"t1. The new pressure p”*é will also be computed. It is assumed that at time t™ we have the

current solution u” and s™. Our discretization of (2.36) will be:

"t = u" — Af[(u- V)u]"ts — AtVatE (2.65)
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where 7 will be our approximation of the pressure. We will discretize the scalar update equation
as:

s = " — AH[V - (us)]"t? (2.66)

which will be our evolution equation for s.
The basic structure of the algorithm is a predictor-corrector scheme. We first predict an

approximation to the new velocity field, u**. This predicted velocity field will not, in general, satisfy

*

the kinematic constraint on divergence. We then correct the velocity field by projecting u** onto

the space of vector fields which satisfy the divergence constraint.

To compute u** and s"*!, we will need a set of edge-centered “advection velocities”, which

. . +3 +3 . . . .
are an approximation of (ulfj,v?j f;) To compute these, we predict upwinded approximations
3 > 3

for the edge-centered velocities at t”+%, and then project these velocities using an edge-centered

projection, which ensures that our advection velocities are divergence-free. To predict edge values

at t"t2 we use a Taylor series approximation, in which we use (2.36) to replace the % term. For
example:
Lo+l n Az du  Atou
i+3.] Vit 5 e T2 B (2.67)
Az du At nti
= up;+ > 9 + 7[—(u V)u—Vpl; ; ®
1 ou At du Atdp
= ul+ (A —ulAt) — — —v— — ——
i+ (A — A S e T S o

This is an extrapolation from the left side of the edge. In order to compute an upwinded solution

at the edge, we will also need an extrapolation from the right, which will look like:

R,n+1 Az du Atou
C e A N T (2.68)
Az Ou At ntl
Uit = 5 g T g L V)u = VRl
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X
X, Xisvz  Xin

Figure 2.10: Left and right extrapolated states

1
uityy ;+ 5(—A:U - UAt)_x - — v - =

See Figure 2.10. In two dimensions, we will also need to compute top and bottom extrapolations
for the (i,7 + %) edges. These are computed analogously to the left and right states.

We then use these advection velocities to compute updated values for the scalar field s™+!,
and the predicted velocity field u**, which are then projected, completing the update. It is also worth
noting that we use convective, rather than conservative, differencing to compute the advection term
(u- V)u because the advection velocities will not be divergence-free in our multilevel algorithm,

although they are solenoidal in this single-grid version.

2.6.1 Computing Advection Velocities

First, we compute approximate edge-centered advection velocities u¢?9¢ by averaging the
cell-centered u”™ to edges:

u¢? = Ap“=Fun, (2.69)

Next, we use a Taylor expansion to extrapolate normal velocities to cell edges. For the
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(i + %,J) edges, this will be (using the notation from [5] — the superscript L indicates that the

extrapolation to edge (i + %,j) is from the left):
wnorm — 1( edge + edge )
6 T 9\litlj i—%,j

1 At 1 At
= ui; +min[5 (1 —uff™ —

iy ) 5)ue)is = 53 (@)
2 B Az 202Ny Y

@,
i+3,j

where u, is the undivided centered-difference in the normal direction, in this case,

1
(uz)ij = 5(“?+1,j - “?—1,;’):
and u, is the undivided upwinded transverse difference:

1
tan edge edge
Vv, s = —(U. . + v
tJ 2( Lj+s z,]—é)

n n H tan
_ ey — il if v; % >0
(@y)ij =

n n H tan
ui g — Uy if vt < 0.

Computing the right state is similar:

~Rn+i 1 At 1 At
i+%,j2 = Ui+ maaz[i(—l —upg "

Then, we choose the upwind state:

~L,n+% . edge
i+3.5 if u iy, >0
n+3 ~R,n+35 .r edge
u, .= U . ifu 7" <0
i+5.J i+35,J . . i+3,d <
1-Lonts ~R,n+35 .¢ edge __
2(quj +ui+%7j) 1fui+%’j—0

i A_x)’ —5](%)”14 - E(ﬂy)wu-

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

Note that we do not include the pressure term in the extrapolation. It is unnecessary

because these velocities will be projected. Also, unlike previous implementations of similar algo-

rithms [5, 16, 44] we do not employ slope limiters when computing u, and u,. Hilditch [39] found
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that slope limiters, which were developed to prevent oscillations in compressible flows with sharp
discontinuities, are unnecessary for smooth, low Mach number flows.

Extrapolation of normal y-direction velocities is similar. Once we have computed a normal
edge-centered velocity field, we apply an edge-centered projection to ensure that our advection

velocities will be divergence-free. This is straightforward — we first solve:
L¢ = D(u"*3), (2.75)

and then correct the velocity field,
u'? ="t — Go (2.76)
We now have a set of edge-centered advection velocities at time t”+%, which we can use to

compute the advective terms in (2.65). Note that we have only computed velocities normal to the

AD AD )T‘

faces, which would be (UH%J, Vil

2.6.2 Scalar Advection

We also would like to advect a passive scalar concentration field with the flow. Since we
have a divergence-free set of edge-centered advection velocities, this is straightforward.

First, we predict edge-centered upwinded values for s"T% in the same way as for the velocity
R,n-‘r%,

predictor. As before, we compute values for §bnts and § and then choose the upwind value

based on the local sign of u4?.

1
wnorm — (uedge + uedge])

o U Wi e o
_Ln+i .1 At 1 At
Sivzy = sig tminl5 (1 —ulf™ ), Sl(se)ig - 2ay PV

where, as before,

1
(52)ij = i(sszrl,j - 5?71,3')
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and
~ spj—sijq it vf‘;” >0
(Sy)ig =19 .. i gt (2.77)
Sig1 — sy ot <0
For the right state:
Rnt+i 1 norm At 1 At
5i+%7j =Sit1; t+ ma$[§(—1 — U4 E)a —5](Sx)i+1,j - m(sy)i-i-l,j-
Then, choose the upwind state:
~L7n+% . edge
i+4.i i,y >0
n+% _ ~Rnt+i . edge
Sivly =\ Sitd 1ful.+%7j<0 (2.78)
1 Lnt+i _Rnt+i . edge
(37 eyt Hugy ;=0
Then, we can compute the fluxes:
S _ AD _nt3
Fi+%,j = Wil %L (2.79)
S _ AD _n+3
Fijvy = “iibsSigey
Finally, the updated state s"™! can be computed using the discrete analog to (2.66):
FS$, —-F%, F5 ,—-F5 ,
sl = p, Ayl Tl Wt WTE (2.80)

Azx Ay

2.6.3 Velocity Predictor

Once we have the divergence-free advection velocities, we can compute an approximation
of N"*2 = [(u- V)u]"t2. Although the advection velocities are discretely divergence-free, which
means that conservative differencing could be used to compute N”*é, we will instead use convective
differencing because in the multilevel case, the advection velocities will not, in general, be discretely
divergence-free, for reasons which will be explained in Section 4.4.2.

First, we must re-predict edge-centered velocities as in Section 2.6.1, this time using the

projected u? rather than Av®~¥F(u”), which was used in Section 2.6.1. To save some work, we
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can re-use the normal velocities u4?

compute the tangential edge-centered predicted velocities. To compute v?ﬁlf i
3

extrapolate in the same way as we did for uf_ﬁllf ;
PR

the effects of the edge-centered projection:

14 A
UZ?Tm = §(uz+D% ,j + ui*D%hi)
L,n+i . 1 At 1 At _
ity = vk Hminl5 (1= e =), S (ve)i — m(vy)i,j
where
1 n n
(Ux)i,j = E(U”W - Uifl,j)a
and
tan __ 1 AD AD
vig' =5 (Wiiky t iy

n n H tan
(6,):; = vy — vt ot >0
yli,j — n n H tan
CHITR K if vt < 0.

For the “right” state,

NR,n+% _ n 1 norm At 1 At _
UH%’J’ = U1t maaz[i(—l — Uy _A:c)’ _5](Uw)i+17j - 2Ay (Vy)it1,5-
Then we can choose the upwind state:
~L,n+% . AD
i+1,j fuiy; >0
n+3 _R,n+1 . AD
Viedd T\ Vit 1f“¢+%,j<0 .
1 ~L7Tl+% ~R,n+3 . AD _
30y 0y 7) Huly,; =0

Finally, we add the pressure gradient term:

half — _ . half _
Vipdj = U Go.

phalf _ Pit1,j+1 + Pic1j+1 — Pig1,j—1 — Pi—1,j—1
4Ay ’
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as predicted velocities u*/. This means that we only must
, for example, we

, in this case including G¢ from (2.52) to represent

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)
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Once we have the edge-centered predicted velocities u"®f, we can compute the advective

terms. First, we compute a cell-centered “advection” velocity uAP—¢¢:

WAD—CC _ 4, BE—~C AD

Then,
half hal f half half
nty _  AD-CC (Wil ~%4a) | ap—co Migrs T %isd
[(u- V)u]m- 2= vy s +v;; Ay (2.87)
hal f hal f half hal f
nty  _  AD-CC (”i+%7j _”i—%,j) Ach’C( ity m’—%)
[(a-V)oli ;2 = i Az T Ay
Finally, we can now compute u**:
Syt At V]l TE 2.88
Ugj = Ui [(u )u]i,j (2.88)
+l
vl*j = v - At[(u - V)U]Zj 2

2.6.4 Projection

Once we have computed the intermediate velocity u**, all that remains is to project it.

Using the approximate projection of Section 2.5.2, this is straightforward. First, we solve

1
La"t% = =D (u™) (2.89)

using the multigrid accelerated algorithm described in Section 2.2.3. Then, we use this pressure to

correct the velocity field onto the space of vector fields which satisfy the divergence constraint:

't = u - AtGECa s (2.90)

2.7 Filters

A discussion of projection methods would be incomplete without mentioning filters. In

much of the literature on projection methods, filtering is used to remove non-physical velocity
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Figure 2.11: Non-physical velocity field preserved by approximate projection

modes that the approximate projection will not remove. As an example, consider the velocity field
in Figure 2.11. While it is obvious upon inspection that this velocity field is not solenoidal, it is in

the null-space of the D¢

operator, so it is not removed by our projection. Lai [44], found that these
non-physical modes caused problems with reacting flow. Rider [53] presents a survey of different
filter formulations, as well as numerical experiments which point to the necessity of filters for some
applications, to remove errors which accumulate and degrade the solution.

While we have implemented the filters mentioned in [53] in our single-grid versions of the
code, developing a multilevel filter proved difficult, as will be described in Section 4.7. Also, we saw
no apparent degradation in our solution without filters. So, the decision was made to defer filtering
until it proved necessary. Since we do not use filtering in our adaptive algorithm, we will not include

filtering in our single-grid algorithm either. The reader is referred to [39, 44, 53] for more involved

discussions on the role of filtering in projection methods.
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Figure 2.12: Initial vorticity distribution for shear layer problem

2.8 Convergence of the Algorithm

To demonstrate the convergence and accuracy of the single-grid algorithm, solutions to
a doubly periodic shear layer were computed on a succession of finer and finer grids. The initial

conditions were:

(2.91)

M NE

v(z,y) = dssin(2nz)

with p, = 42.0 and d; = 0.05. This is the same problem studied by Brown and Minion [26], and
represents a shear layer which is between their “thick” and “thin” cases (Figure 2.12).

To test the convergence of the single-grid algorithm, the doubly-periodic vortex test case
was run on 32 x 32,64 x 64,128 x 128, and 512 x 512 grids. Then, the error in each computation

was estimated by averaging a finer solution onto the next coarser solution:

B = Ay(ul) — u?t (2.92)



CHAPTER 2. FINITE DIFFERENCE METHODS ON A SINGLE GRID 52

Figure 2.13: Doubly Periodic Shear layer vorticity at ¢ = 0.5 on (a) 64x64 grid, and (b) 128x128 grid,
and at t = 1.0 on (c) 64x64 grid, and (d) 128x128 grid. Note formation of spurious vortices in solution in
64x64 solution. Deformation of the vorticity contours near the edges in the 64x64 solution is an artifact of

the contour plotter.
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The convergence rate p can then be estimated as:

1 E2h

p= —ln(ﬁ)

D (2.93)

The rate of convergence was estimated for both components of velocity. The results are tabulated
in Table 2.1, for Ly, Lo, and infinity-norms for time ¢ = 0.5 and in Table 2.2 for Ly, Ly, and
infinity-norms for time ¢ = 1.0. As can be seen, both components of velocity appear to converge
at second-order rates. The only exception appears to be the infinity-norm of the y—velocity (Table
2.2(c)), which shows a marked degradation in convergence. It is believed that in this case, the
appearance of the spurious vortex in the under-resolved cases is affecting these results, since the
spurious vortex is present in the coarser cases, but not in the finer cases. While this is not a strong
enough effect to be seen in more global L; and L, norms, it is seen in the local Lo, norm. For the
solution at t = 0.5, the spurious flow feature has not yet appeared in a strong enough fashion to

affect the convergence results.
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| | b =55~ ox [ o 2 56 | 35 2 515 |
Error(u) 0.0107698 0.0026623 | 0.000559159
Rate — 2.02 2.25
Error(v) 0.00703588 0.0017225 | 0.000369297
Rate — 2.03 2.22
(a) L1 norm
| I h =5~ o5 | o5 2 o5 | 25 2 515 |
Error(u) 0.0214418 0.00518821 | 0.0011087
Rate —_— 2.05 2.23
Error(v) 0.00948762 0.00250181 | 0.000588511
Rate —_— 1.92 2.09
(b) L2 norm
| [ B =g = v | o5 2 55 | 55 = 515 |
Error(u) 0.105859 0.0282326 | 0.00760067
Rate —_— 1.91 1.89
Error(v) 0.0405071 0.0160055 | 0.004045
Rate —_— 1.34 1.98

(¢) Lo norm

Table 2.1: Convergence for velocity, time = 0.5

o4
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| [h=51— o5 | s~ mn | 55— 515
Error(u) 0.0594146 0.0129793 | 0.00244816
Rate — 2.19 241
Error(v) 0.0549152 0.0136606 | 0.00250969
Rate — 2.01 2.44
(a) L1 norm
| [ B =51~ 15 [ 55 2 6 | 55 515
Error(u) 0.0842932 0.0211447 | 0.00473912
Rate —_— 2.00 2.16
Error(v) 0.0661976 0.0195002 | 0.00454566
Rate —_— 1.76 2.10
(b) L2 norm
| lh=5r— os | or— w6 | 55~ 515 |
Error(u) 0.40088 0.133916 | 0.0273512
Rate —_— 1.58 2.29
Error(v) 0.200489 0.0975586 | 0.0329477
Rate —_— 1.04 0.69

(¢) Lo norm

Table 2.2: Convergence for velocity, time = 1.0
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Chapter 3

Adaptive Solutions to Poisson’s
Equation

This chapter will describe the formulation of a Poisson solver using the cell-centered AMR
methodology. Some experimentation was performed to fine-tune the algorithm with an eye toward
constructing the projection method we will eventually use to solve the Euler equations. Since projec-
tion methods generally involve solving an elliptic equation for the pressure to enforce the divergence
constraint, this will be an integral part of the complete adaptive algorithm for the incompressible

Euler equations.

3.1 AMR Notation

In this work, we will employ the block-structured local refinement strategy of Berger and
Colella [18], in which a hierarchy of nested refinements is employed.

All computations will start with a single base grid, which will be as coarse as possible,
in order to best exploit the advantages of adaptivity. This grid will span the entire computational

domain, which we will denote as 2°. The base grid will have n, cells in the x-direction and n,
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cells in the y-direction; these cells will be indexed (i%, %) = (0..n9 —1,0..n) — 1), and will have cell
spacing (ho,z, ho,y) = (@, ).

Coarse cells will then be tagged for refinement based on some estimate of the error in the
solution. (Error estimation will be discussed in more depth in Chapter 5.) Logically rectangular
grids of refined cells will then be used to cover these tagged cells. Cells in these refined patches will

uniformly be a factor of n,s finer than the cells in the coarse grid, with grid spacing (hf™¢, hf"¢) =

(s ho,e, 7, ho,y). We will denote the union of these refined grids as a level, which is indicative of
the fact that all the grids on this level are at a given level of refinement.

If additional refinement is necessary, additional refinement can be added by refining patches
of the already-refined grids, resulting in a set of still-finer grids nested within the initial refined grids
which then make up a new, finer level. This process of nested refinement can be continued until the
solution is well resolved in all regions of the domain or a maximum level of refinement is reached.
For example, see Figure 1.2, which depicts a sample configuration of nested refinements.

The collection of different levels of refinement makes up a hierarchy of levels. We will index
these levels as £ = 0..4,,44, where 0 is the coarsest level (the base grid), and £,,4, is the finest level.
Each level £ + 1 will be a factor of nf, s finer in spatial resolution than level £. While in general
nt, s could be any integer, we will restrict the refinement ratio to be a power of two to facilitate the
use of multigrid acceleration, which was presented in Section 2.2.3. The refinement ratio may vary
between different levels; for example, n},  could be 2 while nZ, s could equal 4.

We will denote by Q¢ the union of grids making up the £th level of refinement. In general,

Qf will be made up of more than one rectangular patch, or grid; these grids will be subregions of

Qf and will be indexed as Q%% where k = 0...n§m-ds — 1. So, for example, the level 1 domain Q! will
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then consist of the union of the level 1 grids, which will contain the cells which have been refined
by a factor of n?, f from the base level. Note that the grids which make up a level need not be
contiguous. In this implementation, grids at the same level of refinement will not overlap, although
there is no reason why they could not do so.

We expect that the solution on refined grids is more accurate than the solutions on coarser
levels. This leads to the concepts of wvalid regions and the composite solution. The refined patches
will overlay part of the original coarse Q° grid. We will define the valid region of the level 0 grids to

be those areas which are not covered by finer grids:

Q?)alid =Q° - P(Ql) (3-1)

where P(Q?') is the projection of the level 1 grids onto the level 0 grid — the level 0 cells which are
covered by level 1. Extending this to the entire multilevel hierarchy of grids, we can say that the

valid region will be the union of all cells not covered by refinement:

lnae

Qaria = | Q= P(QT) (3:2)
{=0

lmaae

4
U Qvalid
{=0

In contrast, we will defined the covered region as the part of a given level which is covered by a

refined grid:

= Q- Qﬁalid (3-3)

covered

= P

On each level, the valid region will also contain edges. Because many quantities are edge-

centered, we will also need to differentiate between valid and covered edges. On a level /, all edges
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in Qf, whether covered by refinement or not, will be denoted by Q*. The walid edges, which we will
denote by Q5" will be the cell edges of valid level £ cells which are not covered by finer edges.

valid’
This will consist of all edges of level £ cells in the valid region Q¢ ., (including the outer edge O0N¢)
with the exception of the outer edges of the projection of the next finer level £ + 1, which will be
considered to be covered by 90!, the boundary of Q¢*!.

We will define the composite solution as the union of solutions on each level’s valid region.
In other words, the solution will only carry any meaning in the finest cells in a particular location;
cells which have been covered by finer grids will not be considered to contain valid information in
the composite solution.

However, in many cases, we will want to organize our computations on a level-by-level basis,
computing on each grid as if it were a single complete rectangle (to take advantage of vectorization,
for example). For this reason, there will often be solution variables which exist for all cells in a
given level, regardless of whether they are covered by finer cells or not. The solution defined simply
on a level, regardless of whether or not it is covered by a refined patch, will be known as the level
solution. In many cases, the level solution in regions which are covered by refinement will just be
the spatially averaged finer-level solution.

As in Section 2.1, variables can have different centerings. Once again, we can have cell-
centered or edge-centered variables, which can then be either composite variables, or level variables.
Composite variables are defined over the entire hierarchy of grids, in the valid regions of each grid.
On the other hand, level variables exist on each level, in both the valid and covered regions on each
grid.

For a cell-centered variable ¢, the level variable is defined on all of Qf, and will be denoted
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by ¢¢. Variables which are composite variables, which only have meaning on the union of valid
regions on all levels, will be denoted by the superscript comp, so ¢“°™P is defined on the union of

valid regions over all the levels which make up the hierarchy of grids. It will also be useful to define

4

¢t which is the composite variable ¢°°™P on the valid region of level ¢, Q¢ ..

For edge-centered
variables, the notation will be similar. In particular, for an edge-centered vector field F, which is

defined at normal edges (see Figure 2.8), F¢ will be a level variable, defined at all cell edges on level

¢, Q%*, while the composite edge-centered field F*°™ will be defined on the set of valid edges 27,

lmae

comp __ comp,{
F - U Fvalid .
(=0

In our refinement scheme, notice that cell edges in covered regions are always overlain by
fine-cell edges, in contrast to cell centers. In particular, the edges making up the outer edges of
refined grids will overlay the coarse-cell edges which make up the outer edges of the projection of
the refined patch. This edge will take on particular importance, because it is the location of the
discontinuity in grid spacing. On one side of this edge, the valid solution is on a refined grid; on
the other side, the valid solution has coarse-level resolution. For this reason, we will call this the
coarse-fine interface. We expect that the discontinuity in grid spacing will cause complications in
our discretization, and so we expect that in regions neighboring the coarse-fine interfaces special

care will be required.

3.1.1 Proper Grid Generation

To simplify boundary conditions and other communication between the solution at different
levels of refinement, we will impose two requirements on the multilevel hierarchy of grids. First, we

will require that any coarse cell undergoing refinement be refined completely; partial refinement as
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Proper Refinement Improper Refinement
Of Célls Of Cells

Figure 3.1: Improper Refinement

shown in Figure 3.1 will not be allowed. Second, we will require that the refined grids be properly

nested. For any rectangular patch on level £, the boundary may be:
1. a physical boundary where 99 coincides with the physical boundary 952,
2. a shared boundary with another grid at level £ (referred to as a fine-fine interface),
3. a coarse-fine interface with the next-finest level £ — 1,
4. a mixture of these.

In particular, we will not allow Q¢ to touch a valid level ¢ cell for ¢/ < ¢ — 1; it may only see the
physical boundary, other grids at this level, or the next-coarsest refinement level. See Figure 3.2.
Cells which have been tagged for refinement will be grouped together using the clustering
algorithm of Berger and Rigoutsos [20] (see Section 5.4.1) to form efficient block-structured grids
which cover the “tagged” regions. Grid efficiency is defined as the percentage of cells which are

refined which were actually tagged for refinement.

Number of tagged cells

lorid = Number of cells actually refined
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Properly Nested at Physical Boundary

\ Prop?y Nested at Interface

o o°

4
/ NOT Properly Nested at Interior Boundary

Properly Nested within Interior

Figure 3.2: Illustration of the proper nesting requirement

62



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON’S EQUATION 63

For simplicity, all level £ cells will share a global index space similar to that of level 0. For
level 1 (the first level of refinement) this will be indexed (0..(n7, ;1) — 1,0..(n), ;ny) — 1). This will
simplify communication of information between the coarse and fine levels. Conversion between the

level 0 and level 1 indices is straightforward. A coarse cell (i°, j°) will correspond to the fine cells
(i',3%) = (nfi®) + b, (npd®) +1) for 0< k1 < (nly — 1).

Conversely, a fine cell (i*, j!) is contained by the coarse cell

-1 -1
0 - 7 J
(%,5°) = (5= =5—)
ngef ngef

where integer division with rounding down is used.

3.1.2 Composite Operators and Level Operators

Since we have defined composite and level variables, we expect that we will need to define
corresponding composite and level operators, which act on these variables.

In general, a composite operator will act on the composite solution on the multilevel hier-
archy of grids. It will only compute values of the operator in the valid regions of a level. Definition
of a composite operator will generally include special discretizations at coarse-fine interfaces to deal
with the discontinuity in grid spacing in a reasonable way. On the other hand, a level operator will
act on level variables, and as such will be essentially a single-grid operator which does not need
to know about local refinements. It will be defined for all cells on a level, whether they are valid
or covered by refinement. Note, however, that if the level operator is being applied to a refined
level (¢ > 0), that it may need boundary conditions from the next coarser level. In general, our
approach will be to enforce boundary conditions with coarser levels through the use of ghost cells

(Section 2.1.1). If ghost cells around the grids on a refined level are filled with appropriate values
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prior to the application of the operator, then the level operator can be defined without knowledge
of the level’s position in the hierarchy of levels. For instance, in many cases we will want to use
interpolated coarse-level solution values as boundary conditions for fine level operators. By first
filling fine-level ghost cells with interpolated data, then applying the level operator, we can separate
the implementation of the operator from the details of the AMR implementation.

In general, implementation of the level gradient, divergence, and Laplacian operators will
be the same as those defined in Chapter 2, with the addition of coarse-fine boundary conditions
from coarser levels. We will discuss only the simple gradient, divergence, and constant-coefficient
Laplacian operators; the extension to more complicated operators is generally straightforward (see,
for example, Bettencourt [22] or Propp [51].)

To define composite operators, we will extend the definitions of the gradient, divergence,
and Laplacian operators from the edge-centered discretizations described in Section 2.5.1.

For Poisson’s problem, we are solving
Lp =V -Vo=p. (3.5)

So, we will need to define a composite Laplacian operator. To simplify this, we will define the
Laplacian as the divergence of the gradient, and then develop appropriate composite divergence and

gradient operators which can then be incorporated into the definition of the Laplacian operator.
Gradient and Coarse-Fine Interpolation

To define a composite gradient operator, we will extend the edge-centered gradient defined

in (2.52) to the case of a multilevel hierarchy of grids. The composite gradient will be defined on

the valid edges of a level ¢, Q%"

vatiq- Once we have defined the composite gradient, we will then define

the level-operator gradient as a simple extension of the composite gradient operator.
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On edges which are not coarse-fine interfaces, definition of the gradient is straightforward:

com x ¢i N ¢i, ]
G p(¢)i+%7j = +1JA:B J (3.6)
Gcomp(qs)i;,j—i_% _ ¢i,j+1A; ¢i,j

For computation of G¢ at a coarse-fine interface, we will interpolate values for ¢ using
both coarse and fine values. As an example, Figure 3.3 shows a coarse-fine interface with the coarse
cells to the right of the interface and the fine cells to the left. To compute the z-component of the
gradient across the interface, we will first interpolate a value into the ghost cell of the fine grid (the

circled X’s in Figure 3.3), and then use this interpolated value to compute a gradient:

I,top
¢i+17jtop B ¢l7]t01’

Grop = v (3.7)
I,bot
G N ¢i+17jbot - ¢i,jbot
bottom  — Az

To compute ¢!, we first use quadratic interpolation parallel to the coarse-fine interface using
nearby coarse cells (marked as open circles in Figure 3.3) to get the intermediate points (marked
with solid circles in Figure 3.3). Using this intermediate value along with two fine grid cells (marked
with X’s in Figure 3.3), another quadratic interpolation is used normal to the interface to get the
appropriate ghost cell value (shown as circled X’s in the figure).

We will henceforth denote this coarse-fine interpolation operator as I(¢fm¢, ¢¢75¢):
o' =1I(¢", 0" ") on 90 (3.8)

will mean that the ghost cell values for ¢ on level ¢ along the coarse-fine interface with level £ — 1

are computed using this type of coarse-fine interpolation.
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ftop

>
fbottom

B

Figure 3.3: Interpolation at a coarse-fine interface

X | X
x| x
x
00 OO

Figure 3.4: Modified interpolation stencil: Since the left coarse cell is covered by a fine grid, use shifted
coarse grid stencil (open circles) to get intermediate values (solid circles), then perform final interpolation as
before to get “ghost cell” values (circled X’s). Note that to perform interpolation for the vertical coarse/fine

interface, we will need to shift the coarse stencil down.
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Since we will want to use this type of quadratic interpolation wherever possible to link the
coarse- and fine-grid solutions, we must use different interpolation stencils for special cases like fine
grid corners (Figure 3.4). If one of the coarse grid cells in the usual stencil is covered by a finer
grid, we then shift the stencil so that only coarse cells in (Q°¢ — P(Q2/)) are used in the interpolation
parallel to the coarse-fine interface. If a suitable coarse grid stencil does not exist, we then drop the
order of interpolation and use whatever coarse cells we do have.

Definition of the level-operator gradient G* is straightforward. We will simply extend the

*,0

definition of G“’™?, which is only defined on the valid edges on a level 0’/

to all edges on the
level, Q6*. Specifically, away from coarse-fine interfaces with the coarser level £ — 1, the composite
operator will use the same stencil as the edge-centered gradient described in (2.52). At the coarse-
fine interface with level £ — 1, we will use the same coarse-fine boundary condition as was used for the

composite gradient. The coarse-fine interpolation operator I(¢¢, ¢*~!) is used to compute ghost-cell

values, which we can then use in the usual edge-centered gradient stencil.
Divergence and Reflux Divergence

We will also need composite and level divergence operators. We will define the composite
divergence operator as a multilevel analog to the edge-centered divergence of (2.51), which is a
cell-centered divergence of edge-centered fluxes.

For a cell in which none of the four edges are coarse-fine interfaces, this reduces to the
normal edge-centered D operator:

F*, . FY FY.

T _ _
i+1,j i—35,] + i,j+1 ij—%

Azx Ay

(D°™PF); ; = (3.9)

Note that for a cell in which none of the four edges are coarse-fine interfaces, this implies that the

Laplacian operator (which is the composite divergence applied to the composite gradient) will reduce



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON’S EQUATION 68

to the normal five-point Laplacian operator, which we would expect.

On the fine side of the coarse-fine interface, we assume that we have already computed an
edge-centered flux on the coarse-fine interface. For instance, in the case of the Laplacian operator,
we have defined gradients on the coarse-fine interfaces using the quadratic interpolation I to define
boundary conditions with the coarse level. So, we can use (3.9) to compute the composite divergence
for these cells as well. On the fine side of the coarse-fine interface, this will imply that the composite
Laplacian once again reduces to the normal five-point Laplacian operator, using the interpolated
ghost cell values ¢!. This also implies that the level-operator divergence D, which will have no
knowledge of any finer levels, will simply be the edge-centered divergence defined in (2.51) applied
to all cells and edges (valid or covered) in QF.

For cells on the coarse side of a coarse-fine interface, we will replace the coarse-grid flux
on the coarse-fine interface with the arithmetic average of the fine-grid fluxes. In the case of the

coarse-grid cell in Figure 3.3, the divergence operator will be:

T _ z,finey . Y _ Y
Fiy, - F didi +Fi7j+% Fij-s

Az Ay ’

(D™PF);; = (3.10)

where (F'%/ i”e)i_% ; 1s the arithmetic average of the fluxes on the fine-grid edges which cover coarse

edge (i — 3,j) (which is part of the coarse-fine interface with the fine level).

Assume that the coarse-grid fluxes F¢"*¢ can be extended to all edges in Q%*, including

e
those covered by the coarse-fine interface edge between Q2 and Q°*!. Adding and subtracting —x2-

to the right hand side of (3.10), we get:

T __ pz,crse z,finey __ pascrse Yy Yy
(DomPE),, = iy Filyy (I g5 — FL G N Fijvr ~ Py
b Az Az Ay
1 .
— (Dcrschrse)i’j _ A_x ((Faz,fzne>i_%7j _ F;icg:;e); (311)
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where D"5¢ ig the coarse-level edge-centered divergence operator. By doing this, we have split the
composite divergence on the coarse side of the coarse-fine interface into the coarse-level operator plus
a correction for the effect of the fine grid. This will prove to be very useful in our implementation,
so we will define some associated notation.

As in (3.11), it will often be necessary to compute the difference between coarse and av-
eraged fine edge-centered values on coarse-fine interfaces. To do this efficiently, we define a flux
register FT!, which will store the difference in the edge-centered quantity F' on the coarse-fine
interface between level £ and £+ 1. §F‘*! will be owned by the fine level £+ 1 because it represents
information on the boundary of level £ + 1. However, it will also have coarse-level (¢) grid spacing
and indexing because it will generally be used to correct coarse-grid values with the appropriately
averaged fine-grid values. See Figure 3.5. Note that the sign of the contributions to 0F is such
that the flux register represents the amount which must be added to the coarse grid fluxes to ensure
agreement with the fine grid fluxes.

If we define the reflux divergence Dy as the coarse-level edge-centered divergence applied

to edge-centered fluxes on the coarse-fine interface, then we can re-write (3.11) as
(D™ F); ; = (D'FY);; + Dr(6F), 5, (3.12)
where
SF = —Ft 4 (F*Y) on 90t (3.13)

For a coarse cell to the right of a coarse-fine interface (as in Figure 3.3),

Dr(§FY),;: = b SEY). L 3.14
J A

T 1—3,]
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Figure 3.5: Flux register along 9Q': the dashed lines represent the edge-centered flux register defined

along the coarse-fine interface. Note that the flux register has coarse-grid spacing.

For a coarse cell to the left of a coarse-fine interface,
1
DRr(6F" 1) = A—x(aF‘fH)H%J. (3.15)

The y-direction is similar. Note that Dy only affects the set of coarse cells immediately adjacent to
the coarse-fine interface.

This will prove to be a very useful tool, in that we have separated the composite operator
into the application of a single-level operator D¢"*¢ and a correction for the effect of finer levels.
There is no reason why the reflux-divergence correction piece cannot be applied separately from the
single-level piece. In fact, in many situations in time-dependent algorithms, this separation of coarse

operator and fine-level correction will become necessary.
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3.2 Solving Poisson’s Equation on a Multilevel Hierarchy

In this section, we will describe our approach to solving Poisson’s equation on a multilevel
hierarchy of grids. We will first describe the discretization of our composite Laplacian operator,
including a motivation of why we take so much care developing composite operators. Then, we
describe our multilevel solution algorithm, and present an example demonstrating the performance

of the algorithm.

3.2.1 Composite Laplacian — Elliptic Matching

First, we can define the level-operator Laplacian, which will be the level-operator divergence

D¢ applied to the level-operator gradient G*:
L' = D'G". (3.16)

Recall that the level-operator gradient uses the coarse-fine interpolation operator I to compute
boundary conditions with a coarser level £ — 1. This means that L* will be the single-grid Laplacian
operator L defined in (2.9), with the addition of the coarse-fine interpolation operator I to provide

boundary conditions with level £ — 1 where necessary:

it1,j + Pi—1,; + Pij ij—1 — 4¢i;
(Li¢)i; = (fiv1, + ¢ 1,J+¢)h7,;+1+¢,] L —49ig) gt (3.17)

o' = I(¢',¢"") onoQt.

As mentioned earlier, we will define the composite Laplacian as the composite divergence

applied to the composite gradient:

Lcompqs — Dcomchompqs (3.18)
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On the coarse grid away from the refined patches the composite operator looks the same

as the single-grid Laplacian operator from (2.9):

Pir1, T Pyt By T L — 405

LCTse (¢)i,j — e

(3.19)

Likewise, on the fine grid away from coarse-fine interfaces the composite operator looks like

the fine-grid version of the single-grid Laplacian operator:

f f f f f
Line (), = Giyrj + Qi+ Py + P — 495,
] h/? .

(3.20)
To define the composite operator where the normal stencils of the coarse and fine operators
cross a coarse-fine interface, we first break the Laplacian into a flux-differencing formulation using

a control volume around each cell. We can then write the Laplacian as the cell-centered divergence

of edge-centered fluxes:

L), = V-F (3.21)
T T Yy Y
_ it ~ iy + Fiivs ~ iy
Ax Ay
where
F =Vo¢. (3.22)

Note that the fluxes are edge-centered quantities; at a coarse-fine interface, they will be defined on
the interface. For the operator on the coarse side of the interface, the coarse flux will be the average
of the fluxes used by the fine operator. Using edge-centered fluxes at the coarse-fine interface greatly
simplifies the construction of the Laplacian operator across coarse-fine interfaces.

Recall that the composite gradient operator G°°™P on a coarse-fine interface is defined

through the use of the quadratic interpolation operator I to link coarse and fine levels, and the
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composite divergence operator links coarse and fine levels by using the averaged fine-grid fluxes on
the coarse-fine interface to define the divergence on the coarse side of the interface.

Applying the flux register and reflux-divergence notation to the definition of the composite
Laplacian operator, the complete description of the composite Laplacian L°°™? on the valid region

cells of level ¢ will be:

LeomPgiom? = L'¢f .+ Dr(0F); (3.23)
of = I(¢',¢"") on 00
41 L41 041\ vl gt
oF (GT9) =G

¢l+1 — I(¢l+17¢)l) on anJrl

In words, the Laplacian is the single-level operator L* plus a reflux-divergence correction to account
for the effect of a finer level (if one exists). Boundary conditions for the Laplacian operator between
this level and a coarser level £ — 1 (if one exists) are enforced by using the quadratic interpolation
operator I to fill ghost cells around Qf. The correction for the effects of a finer level is performed
through a reflux-divergence of the difference between the coarse and fine fluxes along the coarse-fine
interface between levels £ and ¢ + 1. For the Laplacian operator, the flux is defined as the gradient
of ¢. To compute the fine-level (¢ + 1) gradient of ¢ needed for the reflux-divergence correction, we
fill ghost cells around the finer £ + 1 level using quadratic interpolation between the level ¢ and level
£ + 1 solutions.

In short, for the operators defined in the this section, the basic philosophy will be to
always compute boundary conditions with coarser levels using quadratic coarse-fine interpolation,
while enforcing flux-matching with finer levels using reflux-divergences of the difference in the coarse

and fine fluxes.
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Elliptic Matching

We have taken quite a bit of care while defining the composite operators we will use. In
this section, we will present a case explaining why we use such complicated operators.

When solving Poisson’s equation on a multilevel hierarchy, care must be taken to ensure
that the appropriate smoothness in the solution is maintained across the coarse-fine interface. Since
solutions to elliptic equations like Poisson’s equation are nonlocal in nature, we expect that a lack
of smoothness at the coarse-fine interface will affect the solution in a global way.

The simplest approach would be to solve Poisson’s equation on the coarse grid, where the
source term on the coarse grid, p¢, is the average of p/ (the source term defined on the fine grid)
where the coarse grid is covered by the fine grid. Then we could solve the problem on the refined
domain, using interpolated values from the coarse solution as boundary conditions for the fine level.
Unfortunately, it has been shown ([5]) that the resulting composite solution contains an error which
scales with the coarse grid spacing. In other words, we are not attaining the increased accuracy we
would expect from a calculation on a refined mesh.

The problem with this scheme is that the coarse and fine solutions are not sufficiently linked.
Information is passed from the coarse grid to the fine grid in the form of a Dirichlet boundary
condition, but the coarse solution is not modified by the fine solution in any way. This lack of
communication of information from the fine solution back to the coarse solution causes a discontinuity
in g—i which is O(h.). Since the derivative of a discontinuous first derivative of the solution will look
like a d—function in the second derivative, our solution looks like:

fine crse
Lo+ Coae) (22— 22

o Tom )T (3:24)

In effect, we have created a singular charge on the coarse-fine interface which is corrupting the
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solution. This charge is proportional to the mismatch in the derivatives of the coarse and fine
solutions, and is O(h.). Bai and Brandt [10] note that for a similar approach, the coarse solution
away from a singular source distribution is degraded because of a lack of conservation of source
strength between the problems being solved on the coarse grid and on the fine grid.

In order to attain the desired fine-grid accuracy for solutions to Poisson’s equation and
to avoid corruption of the solution by coarse-fine interface error, we will need to ensure that the
composite solution satisfies both Dirichlet and Neumann matching conditions at the coarse-fine
interfaces. This is the elliptic matching condition.

Essentially, the problem with this algorithm is that it did not use the composite operators
described in Section 3.1.2. Interpolating using both coarse and fine grids and using the same fluxes
for both coarse and fine grids links the two solutions enough to satisfy the elliptic matching condition
and fix the coarse-fine interface problem. We can then attain the improved accuracy expected from

refinement.

3.2.2 Truncation Error Analysis

Quadratic interpolation is the minimum necessary to maintain second-order accuracy glob-
ally. We will use the gradient operator in the construction of the Laplacian, which is a second-
derivative operator; it involves a division by h2. If an interpolated quantity has a truncation error

of O(h?), division by h? in the second derivative results in a truncation error of O?~2), If we define

e

i j as the exact composite solution,
;

gﬁf,’f = p(@i,y;)  on Qgqias (3.25)
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fine 1 coarse
Figure 3.6: Sample one-dimensional coarse-fine interface
then the truncation error 7 is defined on the valid regions of the level £ grids as:

Tij = Pij — L (9)i ;- (3.26)

For the one-dimensional example shown in Figure 3.6, where ¢! 1 is the interpolated value,

and ¢iy1 — ¢, = O(hP), we get:

0? it1 + Oi—1 — 2¢;
—8ar(§|i = % ‘z}’ﬂ L7200 o) (3.27)
Lo 01 =200 Gy — o]
— Qlerl d;lz 1 QS + QS +1 h2 ¢)1+1 + O(h2)

so the error is O(maz(h?=2,h?)). Even with quadratic interpolation (p = 3), there is still an O(h)
error at the coarse/fine interface.

Since the discretization of the Laplacian on the interiors of grids away from coarse fine
interfaces is O(h?), we lose one order of accuracy along the coarse-fine interface due to the coarse-
fine interpolation error (along with the division by h? in the Laplacian operator). The question
then arises, “Does this coarse-fine error degrade the accuracy of the global solution?” Since the
coarse/fine interface is a set of codimension one, we have observed that we can lose one order of
accuracy and still be O(h?) globally, similar to what we have observed at the physical boundary (see
Section 2.2.1). This cannot be improved by using higher-order interpolation; while the gradient at

f would be more accurate, the truncation error in the first coarse cell would still be O(h), due to
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the lack of cancellation in the error in the gradient on the two edges.

Using a modified equation analysis, Johansen [43] has demonstrated that, in fact, the
contribution of the higher truncation error at coarse-fine interfaces is indeed O(h?). In essence, this
is the same reasoning presented in Section 2.2.1, repeated here for completeness. While this is not
a rigorous analysis, it does provide some insight, and agrees with what we see in practice. First, we

define the truncation error, 7, as
Tij =P — L(¢%)i; (3.28)

where p is the discrete approximation to p used in the numerical method and L(¢°); ; is the discrete

operator applied to the exact solution ¢°. Then, as we have seen, we have these estimates for 7; ;:

O(h?) for interior cells
Ti,j = . . (329)
O(h)  for cells adjacent to a C/F interface
If we define the solution error &; j = ¢;,; — ¢ ;, then the error satisfies the error equation
LE=T (3.30)

The expectation is that the contribution of each cell to £ is proportional to the total charge on that
cell. For an interior cell, this is 7; ; x h? = O(h*); for a boundary cell, it is 7; ; x h? = O(h?). There
are O(z) interior cells, for a total contribution of O(h?) to &, while there are only O(%) boundary

cells, resulting in a total contribution of O(h?) as well.

3.2.3 Multilevel Multigrid Iteration Algorithm

The algorithm described here is the logical extension of the multigrid algorithm described
in Section 2.2.3 to a multilevel hierarchy of locally refined grids. Our algorithm is a variant of one

first proposed by Brandt [24], and extended by Bai and Brandt [10]. Thompson and Ferziger [65]
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used a similar multigrid algorithm to compute steady incompressible flow, and Almgren, Buttke,
and Colella [7] developed a node-centered version for use in a fast vortex method.

The algorithm described here is based on that in Martin and Cartwright [47], which is itself
a cell-centered extension of the node-centered algorithm of Almgren, Buttke, and Colella. [7]. A
similar algorithm has been used for steady compressible flow by Dudek [34], and for semiconductor
device simulation by Bettencourt [22]. The only substantial modification in the algorithm from [47]
is the addition of a conjugate-gradient solver for unions of rectangles for the coarsest level, instead
of repeated relaxation, as was used in the previous work (see Section 3.2.5). This will allow elliptic
solves which have a coarsest level {45, > 0, because we will generally have to solve on an arbitrary
union of rectangles at the bottom of the multigrid V-cycle, instead of a single 1 x n grid.

For simplicity, we will first describe the multilevel solution algorithm for the case where we
are solving over the entire domain (¢pese = 0) and n,.y = 2. Then we will extend the algorithm to
cover more general cases.

We want to solve

L™ () = p on Qfbese (3.31)

where L™P(¢) is the composite Laplacian operator described in Section 3.2.1.

For each refinement level from ¢ = 0 to £,,4., we will obviously need to store Q¢, ¢f, and
pt, where ¢ and pf are only defined on Qf — P(Q*1), that is, wherever Q° is not covered by a finer
grid. Since we are using the residual-correction formulation, for each level we will also have to define
the residual R! and the correction e’ on the entire Q¢ (including the covered regions of (¢).

In addition to the composite Laplacian L¢°™P, which is defined over the entire hierarchy of

levels, and the level-operator Laplacian Lf, we will also define the composite Laplacian on level ¢,
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Leomp (gt ¢t ¢t=1) which is defined on the valid region of level ¢:
Lcomp,l(d)l, ¢£+1,¢Z—1) — Lcomp¢ on QZ _ P(QH—l) (332)

Recall that away from the boundaries of Q¢ ,,,, L°™P+* is simply the normal L"¢¢¢ that we are used
to dealing with. In cells which abut the Qf/Qf~! boundary, we interpolate values into the border
cells using the quadratic interpolation operator I and then evaluate L™ as usual. Finally, for cells
adjacent to the Qf/Qf+! boundary, we use our flux matching condition to generate the fluxes across
the boundary. Thus, we always interpolate coarse grid information as mentioned earlier, and we
always use the flux matching condition to represent the influence of the finer grids.

Note that we have explicitly shown the dependence of L¢™P:¢ on both the coarser-level
solution (in the form of quadratic interpolation with ¢¢~!) and the finer-level solution (in the form of
the flux-matching condition with ¢¢*!). In a similar way, we will explicitly show the dependence of
L* on the coarser-level solution through the coarse-fine boundary condition I(¢¢, #*~1) by referring
to the level-operator Laplacian as L(¢f, ¢*~1).

We will also need an operator which performs a point relaxation for Poisson’s equation.
So, we define GSRB_.LEVEL(e!, RY, hy) on Qf. This performs one iteration of Gauss-Seidel with
Red-Black ordering on the data on level ¢. This operator has no information about other levels,
although it should know the appropriate operators and boundary conditions to relax on each level.
Therefore, this operator looks like:

e i=e;;+ ML (e e =0) - R} (3.33)
with red-black ordering. As before, red-black ordering means that we relax using two passes through

the domain in a checkerboard pattern: on the first pass, we relax on points where (i+j) is even
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(the RED pass); on the second, we relax on points where (i+j) is odd (the BLACK pass). Note
that, because the GSRB_LEVEL is designed to be unaware of both coarser and finer levels, the
relaxation uses L’ with all the coarse grid information set to 0. In other words, we use the coarse-

fine interpolation operator I(¢%,0¢~1), where 0! denotes a coarse level £ — 1 grid with zeros in all

2
T .

the cells. For interior cells, we use the normal relaxation parameter A;nterior =

For each level, the residual will contain two components. First, as in normal multigrid
relaxation, the residual on level ¢ contains the residual from higher (finer) levels, mostly the low
wavenumber error that is not damped out by the GSRB iterations at the finer levels. In addition,
there is the residual from the operators on level ¢ where there are no overlying finer grids. If there
is no overlying fine grid, then we are starting our multigrid V-cycle on this level; otherwise, we are
simply continuing the multigrid relaxation which was begun on the finer levels.

The multilevel multigrid algorithm we will employ is described in pseudocode form in Figure
3.7. The function AMRPoisson(e) will call the recursive multigrid iteration function MGRelax(¢)
until the maximum residual has been decreased by a factor of e.

The algorithm is structured like the multigrid algorithm for a single grid, described in
Section 2.2.3 — we start at the finest levels, then progressively coarsen and relax our way down the
V-cycle, then solve on the coarsest level, then interpolate and relax our way back up the V-cycle.
The difference is that in this case, the data to which we are applying our various operators may
not be defined on the entire physical domain at that level. We will use the same interpolation
and restriction operators that we used in the single-grid multigrid algorithm: Rf‘l will be simple

arithmetic averaging, and I, ﬂl will be piecewise constant interpolation.

Since we compute the coarser-level residual on the uncovered regions of the coarser grids
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AMRPoisson(e)
Res := p — L°™P(¢).
while (|Res| > €|p|)
Res := p — L°™P(¢).
MGRelax(¢£™ax).
end while

end AMRPoisson

MGRelax(¢):

if (( = ¢m2*) then Res’ := p’ — L(¢%, ¢*71)

if (¢ > 0) then
plsave .— gt
et~ =0
e’ := GSRB_LEVEL(e’, Res, hy)
o = pl + et
Res'™' := R\ (Res® — Li(ef et 1)) on P(QF)
Rest=1 1= pt=1 _ [eompl=1(g=1 € 40=2) on Q=1 _ p(Qf)
MGRelax(f — 1)
et i=ef +1If [(e))
Res’ := Res® — L(ef,e"1)
del :=0
de’ := GSRB_LEVEL(de’, Res*, hy)
el = el + def
@l = phsave 4 ol

else solve/relax L% = Res® on Q°
@0 = 0 + 0

end if

end MGRelax

Figure 3.7: Pseudocode description of AMR, Poisson multigrid algorithm

81
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using the composite operator LEmP£=1(pt=1 ¢ #*~2) note that we update ¢’ with the current
correction before computing the coarser residual, in order to compute a residual which reflects
corrections made on the finer level. However, on the way back up the multigrid V-cycle, we will
want to add the correction to the original value for ¢, which is why we save the original uncorrected
value for ¢f as ¢f-seve,

When we arrive at the coarsest level, we have one domain. We can then iterate on L%° =
Res® on Q0 using the single-grid multigrid algorithm described in Section 2.2.3. Once that is done,
we update the coarse level solution, ¢° := ¢° + €%, and start back up the V-cycle.

On the way up the multigrid V-cycle, we must modify the algorithm slightly. First, we

update the fine grid (level £) correction:
el =et +If (7). (3.34)

However, now we cannot go directly to a GSRB_LEVEL iteration, because we now have a coarse grid
correction which we will need to use as a boundary condition. We handle this the same way we handle
any problem with inhomogeneous boundary conditions: we put the problem in residual-correction

form to make the boundary conditions homogeneous. So, we first must modify the residual:
Res' := Res® — Lf(ef, 7). (3.35)

We then define a correction to the correction, def, set it to 0, and then perform a GSRB.LEVEL
operation on it:

de’ := GSRB_LEVEL(de’, Res’, hy). (3.36)

Then, we can update the correction and the copy of ¢¢ which we had saved:

el == el +det (3.37)
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Figure 3.8: Multigrid with n,.; # 2. Because nief = 4, we perform an intermediate coarsening in the

multigrid cycle before coarsening from level 2 to level 1.
QSZ — d)[,save +e€_ (338)
3.2.4 Extension to n,.; =2,p>1

When n,.s is two, the multigrid coarsening and injection is straightforward, since the
coarsenings used in the multigrid algorithm correspond to existing levels of refinement. This is not
the case when n,.s is greater than two, however; we still want to coarsen by a factor of two for
multigrid, but this will result in intermediate multigrid levels which do not correspond to the data
in our multilevel grid hierarchy.

In this case, we will modify the algorithm slightly by doing a mini-multigrid V-cycle,
coarsening the fine grids by repeated factors of two until the next coarsening would result in the
same grid spacings as an existing level of data in the AMR hierarchy. A schematic of this cycle is

shown in Figure 3.8. In this example, nief = 4. So, we first relax on level 2, then coarsen the level 2
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grids down to the intermediate level shown, coarsen the residual and correction to this intermediate
level, and relax using GSRB-LEVEL. Then, we interpolate the correction back to level 2 and relax
on level 2 again. Then, we coarsen the level 2 residual down to level 1 and continue on our way.
Since n?, # 18 2, we can relax on level 1 and then coarsen directly down to level 0, from which we once
again coarsen as far as possible, solve, and then proceed back up the hierarchy. Once the solution
has been relaxed on level 1, we interpolate directly to level 2, relax on level 2, then coarsen to the
intermediate level again, where we relax again before interpolating the solution back up to level 2
and performing a final relaxation.

The reason why we relax on the intermediate levels and then interpolate back to the fine
level before coarsening to the next coarsest AMR level is that coarse-fine boundary conditions are
simplified. Since we are using the residual-correction form of the equation, the coarse-fine boundary
conditions on the correction are a homogeneous version of the coarse-fine interpolation discussed
in Section 3.1.2. In this interpolation, we use the same coarse grid used in the level 2/level 1
interpolation, but with zeroes in all the cells. It is important for consistency that we use the same
coarse grid for all the intermediate coarsenings, so that the distance of the coarse-cell values from
the coarse-fine interface remains constant as we coarsen the grids.

Note also that for n,.y = 8 there would be two intermediate levels, for n,.y = 16 there

would be three intermediate levels, etc. (Although in practice we rarely use npoy > 4).

3.2.5 Extension to (.. >0

In various places we will want to solve a multilevel elliptic problem on levels ¢ > fpuse
where £p,s. > 0. In this case, we are solving on all levels finer than (and including) level £y, with

appropriate coarse boundary condition values provided from level £y, — 1 if necessary. This solution
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algorithm is similar to that presented in Section 3.2.3 for the levels finer than fp,s.. When we reach
level lpqse, we perform a procedure similar to that used for level 0 in Section 3.2.3, coarsening
the level fp,5. grids as much as possible. In general, we will not be able to reach a 1 x n grid
through repeated coarsenings of level {445, grids. In most cases, we will reach a point where further
coarsenings are impossible without destroying the “footprint” of the grids (Figure 3.10). In other
words, further coarsening will result in a set of coarsened grids which, when re-refined, will not be

the same as the original grids:
Qf,coarsest ;é Tefl"ne(COGTS@H(QZ’CoaTseSt)).

When we reach this level, we then solve the resulting coarsened residual-correction equation exactly
(or as exactly as possible) before starting back up the hierarchy. At present, we use a conjugate
gradient solver [12] as a bottom solver. Our implementation of a conjugate gradient solver on a union
of rectangles follows that of Bettencourt [22], and is detailed in Figure 3.9. Note that computations
are carried out using composite operators over the union of grids. Note also that the problem
as defined with composite operators over a union of grids is no longer symmetric, so the conjugate
gradient approach is not guaranteed to work. In our case, the problem is simple enough that we have
not experienced any difficulties; however, Bettencourt [22] found it necessary to use a Biconjugate
Gradient Stabilized (BiCGStab) method for problems with strongly varying coefficients.
Coarse-fine boundary conditions are enforced by using the coarse-fine interpolation de-
scribed in Section 3.1.2 to compute ghost-cell values for ¢ when computing the residual on level
lpase- Then, homogeneous coarse-fine interpolation (again keeping the coarse grid data constant) is
used for the coarsenings of level fp,5¢, in the same way as for the intermediate multigrid levels in

Section 3.2.4.
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BottomSolve(¢, b)

res® = L(¢) — b

corr(® =0

for (i=1,2,..

)

Smooth(corr(=1) res(i-1))

Smooth(corr(i—l) , Tes(i_l))

if (¢>1and pi_» ==0.0 ) return

pPi—1 = DOt(COTT'(ifl),res(ifl))
if (i ==1)

pM) = corr(®

else

Bi-1 = pi-1/pi2
P = corr(i=1) 4 3; 4 % pli-1)

end if

9 = L)
a; = pi—1/Dot(q,p'?)

corr® = corpli—1) 4 aip(i)

res() = resli—1) — Oliq(i)
u® = L(corr®) — res(®

if (J[u?]| < tol  ||[res')||) return

end for
¢ = ¢ + corrt

end BottomSolve

Figure 3.9: Pseudocode for the conjugate gradient bottom solver
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Figure 3.10: Best Coarsening: Grid configuration at right is the best possible coarsening of the grids at
left.

3.2.6 Level Solves

In the AMR algorithm for the incompressible Euler equations which is described in the
next chapter, we will also at times need to solve the elliptic equation on one level ¢ without solving
on either finer or coarser grids. In this case, the algorithm will be the same as that of the algorithm
in Section 3.2.5 if £y, is also the finest level. We simply compute the residual on Qf without taking
the effect of finer levels (even if they do exist) into account. Then, we implement multigrid in the
same way as in Section 3.2.5 for level £p,5.: coarsen as far as possible, apply the conjugate-gradient

bottom solver, and then refine back up to level /.
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7

(a) (b)

Figure 3.11: AMR Poisson test problem (a) Source distribution, and (b) Solution

3.2.7 Performance of the Algorithm

The AMRPoisson code was tested on a sample problem with p equal to three Gaussian
charges, as shown in Figure 3.11. To give an idea of grid placement, the grids used for a solution with
two levels of refinement are shown as well. To judge the effects of adaptivity, we solved this problem
with a series of coarser base grids, but with the same error tolerance. By doing this, we solve the
problem to the same level of accuracy each time, but more levels of refinement become necessary as
the base grid becomes coarser. The Richardson extrapolation error estimation algorithm of Section
5.3 was used to estimate the local truncation error of the solution; cells with estimated errors higher
than the specified error tolerance were tagged for refinement. Cells marked for refinement were
then clustered into unions of rectangles using the clustering algorithm of Berger and Rigoutsos [20],

described in Section 5.4.1. By setting the error tolerance €¢,, for the Richardson extrapolation
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[ Base Grid Size [ h = 1/64 | 1/128 | 1/256 | 1/512 | 1/1024 || total |

1024 x 1024 — — - — 1048576 || 1048576
512 x 512 — — — | 262144 2304 264448
256 x 256 — — | 65536 | 10496 2304 78336
128 x 128 — 16384 | 17280 | 10496 2304 46464

64 x 64 4096 15360 | 17152 | 10496 2304 49408

Table 3.1: Number of cells at each grid resolution, tabulated for different base grid sizes when solving
sample problem

error tagging routine to be 0.0005, no refinements were needed for a base grid of 1024x1024, while
one level of refinement was needed for a 512x512 base grid (and two levels were needed for a 256 %256
base grid, etc.). For all of the solutions, the maximum error on the finest grid as computed using

(3.39) was 4.27 x 10~ 4.
Errort = Average(LY(¢%, ¢* 1)) — L1 (Average(¢)). (3.39)

To show the effects of adaptivity on the resulting grid hierarchy, the total number of cells on each level
is tabulated in Table 3.1. It is worth noting that, in every solution where refinement is employed, the
number of cells at the finest resolution is constant at 2304, while the number of cells at the second
finest resolution is constant at 10496. This points to the effectiveness of Richardson extrapolation
as a consistent indicator of the necessary resolution for attaining a given level of accuracy in the
solution.

The convergence history of this algorithm is shown in Figure 3.12 for refinement ratios of 2,
4, and 8 Adding local refinement to the solution did affect the convergence rates of the multigrid cycle
somewhat. The convergence results are shown in Table 3.2. With no refinement, the Max(residual)
was reduced by an average factor of 16.0 per multigrid cycle. In other words, the maximum of the

residual after one full multigrid V-cycle was, on average, ﬁ times the maximum residual at the
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Convergencefor nRef =2 Convergencefor nRef =4
Max Residual Max Residual
w T ILleve 1e+01FT ILlevd
2Levels ™  Levels
1e+00 Slevds 1e+00 -
4levels
1e01 1601
1e-02 - 1ozl
1e-03 b 1603
le-04 T 1e04
105 1 1005}
1e-06 B 16061
1e-07 - 1007
1e-08 B 16081
1e-091 . . ‘ L= teration # . . . ‘ . Iteration #
0.00 2.00 4,00 6.00 8.00 0.00 2,00 4,00 6.00 8.00
(a) (b)
Convergencefor nRef =8
Max Residual
1e+02 1 1Leve
2Levels ™

le+01- -

1e+00 - -

le-01- —

1le02 -

1e-03 B

1le-04 -

1e05- -

1e-06 - B

1le-07 —

1e-08- -

. . ‘ Iteration #
0.00 5.00 10.00

Figure 3.12: Multigrid Convergence for (a) n,c; = 2, (b) n,ef =4, and (¢) nyey = 8
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Refinement Ratio 1 level 2 levels | 3 levels | 4 levels
(no refinement)
2 16.00 31.87 37.23 35.26
4 16.00 20.58 25.25 —
8 16.00 5.23 — —

Table 3.2: Convergence rates (average factor by which max(residual) is reduced for each multigrid itera-
tion), tabulated for different refinement ratios and number of levels of refinement

start of the V-cycle. When one level of refinement (with a refinement ratio of 2) was added to the
solution, the convergence rate increased to an average factor 31.9 reduction per multigrid cycle. A
second refinement led to increased convergence, with an average reduction of 37.23. When a fourth
level was added, however, the convergence rate decreased to an average factor 35.26 reduction in the
max(residual).

Refinement ratios greater than 2 do appear to slow convergence somewhat. With a re-
finement ratio of 4, one level of refinement converged with an average factor 20.58 reduction in
the residual, while for two levels, the max(residual) was reduced by an average factor of 25.25 per
multigrid iteration. Using a refinement ratio of 8 led to a markedly poorer performance, however.
One level of factor 8 refinement only showed an average reduction in the max(residual) of a factor of
5.3 per multigrid cycle. For the rest of this section, all timing results use a refinement ratio of two.
We believe that the slower convergence rates for refinement ratios greater than two are a result of
the intermediate V-cycles necessary in these computations.

To easily judge the effects of adaptivity, timings were normalized by the timing for the
unrefined 1024 x1024 solution, which was 58.11 sec on an SGI Power Challenge. Also, the total
number of cells for all levels in each solution (including the non-valid portions where grids are

overlain by finer grids) was recorded and likewise normalized by the total number of cells for the
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Normalized Timings and Cellcounts

CPU Time

Cell Counts

=l ‘ ‘ ‘ = Refinements
00

Figure 3.13: Normalized timings for the Poisson Solver

unrefined grid, 1048576. The total number of cells is an indicator of how much memory was used in
the solution. A log plot of these normalized results appear in Figure 3.13. As can be seen, the total
number of cells in the solution decreases with the number of refinement levels, ranging from 30.6%
of the base number of cells with one level of refinement to 4.5% of the base number of cells with
three levels of refinement. Adding a fourth level of refinement actually increases the total number
of cells because so much of the base level is being refined (in this case, 93.75 of the domain is refined
to level 1). The timings initially decrease strongly with additional levels of refinement, up to two
levels of refinement, then level off at around 15% of the CPU time for the unrefined solution and
actually rise slightly. This leveling off is due to the need when using Richardson extrapolation to
compute a solution with £ — 1 levels before generating a (" level. In other words, to compute a

solution with two levels of refinement, first a single grid solution must be computed, then the error
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estimator defines the level 1 grids, which are then used to compute a two level solution, and then
the error estimator is able to create the level 2 grids based on the error computed in the two level
composite solution. Since the coarser levels are, in general, small in comparison to a finer base
domain, this is generally inexpensive. However, with more levels of refinement, this can begin to
offset the savings in computational time. In a sense, this is sub-optimal, because more effort is being
spent, on recomputing solutions on the coarse levels than on the finer levels, especially if the refined
levels are small compared to the coarse levels. Bai and Brandt [10] suggest computing the initial
solutions to less accuracy, increasing the solution accuracy as the number of levels increases. In their
experience, this evens out the amount of work spent on coarser levels.

It should be noted, however, that once the break even point has been reached on CPU
time, the additional refinement in this case still represents a savings in memory. Obviously, when
the total number of cells increases, as is the case between three and four levels of refinement, CPU
time will increase faster than the number of cells in the solution, due to the overhead of generating

and managing the grid hierarchy.

3.3 Alternate Algorithm

In our time-dependent algorithm for the incompressible Euler equations, we will refine in
time as well as space. Since different levels will be advanced using different timesteps, it will not
generally be feasible to perform solves in the composite manner outlined in the previous sections.
Following the example of Berger and Colella [18], we will structure our multilevel solution algorithm
as a series of solves on individual levels, along with corrections to enforce the proper coarse-fine

matching conditions. The level solves will consist entirely of operations on single levels (with no
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influence from finer levels) and interpolated boundary conditions from coarser grids if necessary.
Once a solution based on level operators has been computed on all levels, we will need to correct
to the solution to ensure that the composite solution satisfies the equations based on composite

operators.

3.3.1 LevelSolve + Correction Formulation

In the case of Poisson’s equation, this is straightforward. Using (3.23), we can re-cast the

equation we are trying to solve on a given level ¢ as:
Leemb@ty = LY@ 9 + Dr(68H) = pt (3.40)
o' = I(@,%") on QYT
Notice that we have explicitly included the coarse-fine interpolation operator, which represents the

coarse-fine boundary condition on ® with the coarser level £ — 1. §®‘*! is the flux register which

contains the mismatch in V& along the ¢/¢ + 1 interface, which is:
50! = —Glel4 < G > on 90! (3.41)

where GT1®¢*1! is computed using the standard coarse-fine interpolation operator to compute ghost
cell values for ®.

This formulation leads to an obvious splitting into level operators and corrections. Let
d=¢+e (3.42)

where ¢! is the result of a level solve for ¢ and e is the correction field needed to ensure that ®

satisfies the composite equation. In this case, (3.40) becomes:

L® = L'+ Dg(6®"") + Lle’ + Dg(de't) = p (3.43)
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ot = I(¢%,6'1) on 9O/
et = I(e et on AN
With a little rearranging, this becomes the level solve equation for ¢:
Let = pt

¢* 1(¢%,¢7") on 9Q°

along with an associated equation for e:

L'e* —Dg(6¢"") — Dp(de")

et = I(eef™) on 9Q°

which we can solve through iteration, also using level solves.

95

(3.44)

(3.45)

All that remains is to embed this formulation in an iterative algorithm. There are actually

two different ways to do this. While the initial level solves for ¢ must be ordered from the coarsest

level followed by the successively finer levels because of the coarse level boundary conditions, the

correction need not be done that way. The correction may be solved from coarsest level to finest

level (bottom-up iteration), or it may be solved from the finest level down to the coarsest level

(top-down iteration). We will look at each in turn. Both algorithms were then tested using a similar

test problem to that used in Section 3.2.7, but with only one Gaussian source in the center (to make

visualization simpler).

3.3.2 Bottom-Up Iteration

In this algorithm, we first do a series of single level solves for ¢, solving from the coarsest

level up to the finest, using the coarser level solution as a boundary condition for the current level.
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Then, starting at the coarsest level, we solve for e, which is the correction due to the effect of the
finer level solution. We then iterate on the correction until the composite residual is sufficiently
reduced.

The source for the correction on each level ¢ has two components: the mismatch between
the current level and the finer (¢ 4 1) level appears as a reflux-divergence around the projection of
the (€+1) grids, while the mismatch between the solution on the level £ and the coarser £ —1 solution
appears in the coarse-fine boundary condition. On the finest level, all we are doing is relaxing the
correction to account for the mismatch due to the correction on the coarser levels. A pseudocode

description of this algorithm is shown in Figure 3.14.
Convergence History

The convergence history for this algorithm is shown in Figure 3.15, which shows the L,
norm of the composite residual vs. number of correction iterations for two-, three-, four-, and five-
level solutions (a two-level solution has a base grid and one level of refinement). For this algorithm,
the composite residual decreases monotonically with correction iterations. For each case, the residual
drops off at a slower rate for (£™** — 2) iterations (which is (number of coarse-fine interfaces) -1),
and then drops off very rapidly down to roundoff. This is apparently due to the need to correct
for the effects of the correction on the composite solution. Figure 3.16 shows the residual for the

three-level case.

3.3.3 Top-Down Iteration

In this version of the algorithm, the level solves are done as before, but the corrections

are done starting at the finest level and proceeding down to the coarsest level. This means that
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BottomUp(e)
do ! =0, lnas

solve L{(¢!,¢!=1) = pf, ¢! = I(¢,¢™) on 90U/~

if (¢ < lmaz)
6¢£+1 — _Gld)l
if (¢ 0)

on ONY/t+L

59! = 86! + (Ggt) on 9O/

det = 6ot
end do

Res = p — L¢P (¢)

while (J|Res|| < €]|p||]) do:

do ¢ =0, laz

solve Lf(ef ef=1) = Dp(detth), e=I(e!,ef~") on Q-1

if (¢ < lpaz)

deltl = ottt — Glet on ONH/EH!

set = del + (Get) on 9O/t

if (¢ #0)
end do
Res = p— L"P(9)
end while

end BottomUp

Figure 3.14: Bottom-up iteration algorithm
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L1(Residual) vs. Correction Iterations

L1(Residual)
1e-03FT —L1,2Levs
L1, 3Tevs
L1, 4Llevs
|LL,5Levs
Iteration #.

0.00 5.00

Figure 3.15: Convergence history — bottom-up iterations

the coarse-level corrections used for the coarse-fine boundary condition for the current correction is
lagged behind the current correction. On the finest level, the initial correction does nothing, since
the coarse correction is initially 0, and there is no residual induced from a finer level. Then, the
initial correction on the coarser levels is solely due to the mismatch in ¢ (the level-solve solution)
at the £/¢ + 1 interface. Subsequent corrections on a level ¢ then account for the current mismatch
with the finer level £+ 1 as well as the lagged mismatch with the coarser level £ — 1. A pseudocode

description of this algorithm is shown in Figure 3.3.3.
Convergence History

The convergence history for this algorithm is shown in Figure 3.18, which shows the L;
norm of the composite residual vs. number of corrections for two-, three-, four-, and five-level

solutions. Note that, as opposed to the results shown in Figure 3.15, the residual initially rises,
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(b) (c)

Figure 3.16: Residual for bottom up iteration: (a) initial residual (after level solves), (b) after 1 multigrid

correction iteration, and (c) after 2 multigrid correction iterations
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TopDown(e)
do ! =0, lnas
solve Ll(¢£,¢£—1) — pf, ¢£ — I(¢l,¢£—1) on ONE/E-1
if (¢ < lyaz)
5¢£+1 _ —Gd)l on ONE/t+1
if (¢ +#0)
6ot = 66t + (GLot) on 9NH/ET
det = 6t
end do

Res = p — L*™P(¢)

while (J|Res|| < €]|p||]) do:
do € = (55,0
solve Le = Dp(dett!), e=1I(ef,ef~") on 9N/t-1
if (¢ #0)
set = 0! + (G'et) — Gle*1 on 9O/
end do
Res = p — L*™P(¢)
end while

end TopDown

Figure 3.17: Top-down iteration algorithm

100
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L1(Residual) vs. Correction Iterations

L1(Residual)
T L1, 2Levs
1e:02- L1, 3Levs
L1, 4levs
1e-03+ L1, 5Levs ~
le-04 =
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1e-06 - =
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le-08+ =
1le-09 =
1e10L. ‘ T : Iteration #
0.00 5.00 10.00 15

Figure 3.18: Convergence history — top-down iterations

stays relatively constant, and then begins a rapid decrease to roundoff after ¢,,,, iterations.

As can be seen in Figure 3.19, it appears that the residual first increases at all coarse-
fine interfaces, and then the large residual is eliminated at the level 0/1 interface, then the level
1/2 interface, and so on up the hierarchy until all the large coarse-fine interface error has been
eliminated.

This slowdown in convergence is most likely due do the lagged nature of the corrections.
One way to think about this is that there is not really one correction, but a series of corrections
€0, €1, ez, ... and the total solution is equal to the result from the level solves ¢ plus the sum of the
corrections:

N=Nmazx

=g+ > e (3.46)

n=0

Reiterating (3.45), the correction should satisfy:
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() (d)

Figure 3.19: Residual for top down iteration: (a) initial residual after level solves, (b) after 1 multigrid

correction iteration, (c) after 2 multigrid correction iterations, and (d) after 4 multigrid correction iterations.
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L'e = —Dg(6¢'™") — Dgr(set™)

e = I(efe™h

With this algorithm, the correction e, is actually satisfying:

k=n—1

L', = —Dg(5¢'"") = Dr(dpeit™) — Y [Dr(deit) + Llex] (3.47)
k=0

€n = I(efzaefzill)

l+1

The notation dpe:t* refers to the normal flux register, but with the fine level component only, due

n

to the lagged nature of the correction:

Speftt =< Gleltt > on 9QY/HHE (3.48)

n

Note also the mismatch in the coarse-fine boundary condition.
The first correction, eg, solves only for the mismatch in ¢ between the £ and £ + 1 levels,
along with the effect of the fine level correction on the solution. In subsequent iterations, the equation

being solved is:

Le, = —Dgr(6ce’t ) — Dr(dpei e, = I(ef,et7Y) on 8Q¢/¢ 1, (3.49)

n—1 n’-n—1
where dcet™ is the coarse level contribution to the level £/¢ + 1 flux register:
Sceltt = Glef, on 9O, (3.50)

So, the effect of the large coarse-fine error is propagated down to the level 0/1 interface, where it is

eliminated, and then the level 1/2 interface can be updated, and so on.
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3.4 Convergence and Errors

We also looked at the global convergence of the multilevel Poisson solvers described in this
chapter. Because the composite operators, residual, and convergence criteria were defined in the
same way for each method, we expect that the accuracy and errors in each will be comparable. So,
while the analysis in this section was conducted using the bottom-up level solve/correction algorithm
of Section 3.3.2 (because that is what we were working on when this work was done), it should be

applicable to the standard multilevel solution algorithm as well.

3.4.1 Convergence

To obtain convergence results, we solved Poisson’s equation for a problem for which we
have an exact solution. This enabled us to better look at errors in the solution and their behavior as
the grids were refined. The sample problem used was a single quartic source, with Dirichlet physical
boundary conditions set to be the exact solution on 02 if the problem was being solved in an
infinite domain using the higher-order ghost-cell discretization (2.3). For these convergence studies,
the strategy was to fix a certain number of levels (in this case we looked at two-level solutions — base
level + one level of refinement), and then let the Richardson extrapolation error estimator (Section
5.3) generate grids adaptively based on its truncation error estimates. As we refine the base grids,
we also scale the regridding error tolerance for consistency. Since we expect the algorithm to be
O(h?), we scale the tolerance in the same way; for example, the tolerance for a 128 x 128 base grid
would be 4% the tolerance of the 32x32 case.

Quantities that we looked at were:



CHAPTER 3. ADAPTIVE SOLUTIONS TO POISSON’S EQUATION 105

Error:

€ = d)ezact - QS

Truncation Error:

T = L(¢exact)_L(¢) (3'51)

= L(¢exact) — P

Boundary truncation error, 7,4, the truncation error on cells adjacent to coarse-fine interfaces

(on both the fine and coarse sides of the interface).

Internal truncation error, 7;,+: the complement to 7p,,q

Tint =T — Tond (3.52)

Boundary Error: The error in the solution which is a result of truncation error at the coarse-fine

interfaces. To compute this, we solve the equation:

L(ebnd) = Thnd, (353)

€pnd — 0 on 002

Internal error: The complement to €p,q (this also includes the error due to physical boundary
conditions).

€int = € — €pnd (3.54)

Plots of these errors vs. coarse grid spacing are shown in Figure 3.20 in L, and L; norms.

The “bump” in the error after the 128 x128 base grid occurs due to a change in the grid configuration.
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Figure 3.20: Errors vs. grid resolution. Errors in (a) LooNorm, and (b) L; Norm
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Up to this point, the fine grids occupy a corner in the domain, with both the top and right sides
of the refined patch abutting the physical boundary. As the base grids get finer, the fine patch
separates from the physical boundary, so that it has coarse-fine interfaces on all four sides. It is
worth noting that this rearrangement of the grids has little, if any, effect on the global error and
truncation errors — it just leads to a redistribution of the error between “internal” and “boundary”
components.

As expected, the L., norm of the global error is O(h?), as is €;,;. Also as expected, the L
norm of the truncation error is O(h), due in this case to the truncation error induced at the physical

boundaries. The L; convergence of this algorithm appears to be between O(h!'-%) and O(h?).

3.4.2 Effects of Local Refinement

Another interesting result was obtained by taking the 64x64 base grid case and allowing
the grid generator to generate as many grids as it deemed necessary. The errors as a function
of number of refinements is shown in Figure 3.21 for the L., and L; norms. It is apparent that
refinement is only beneficial for one or two levels of refinement, after which the error no longer
decreases, and actually increases slightly. We believe this to be the result of two tendencies, both
due to the increasingly singular nature of the solution as we refine.

First, we are refining smaller and smaller portions of the domain, so it is apparent that
local improvement of the solution in a tiny portion of the domain will have little to no real effect on
the global solution.

Second, although we are improving the accuracy of the solution on the interior of the
fine grids (note the steady improvement of the internal component of the truncation error), we

are balancing this with the creation of new coarse-fine interfaces, with their associated O(h) error.
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Error vs. Refinements
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Figure 3.21: Effects of local refinement. Errors in (a) Lo Norm, and (b) L1 Norm
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The effects of this increased boundary error are most apparent by looking at the truncation error
— although the internal component decreases steadily as more fine levels are added, the associated
increased boundary error causes the total truncation error to remain constant.

This has implications on our regridding and error-estimation strategies. For instance,
Trompert and Verwer [67] include the increased error due to interpolation errors on the coarse-fine
boundary in their regridding criterion, and point out that it is best to place coarse-fine interfaces
where the solution is not strongly varying, to minimize the effects of coarse-fine interface errors. Also,
Propp [51] presents a flux-based Richardson extrapolation error estimation method which accounts

for the surface to volume ratio of the refined grids.
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Chapter 4

Adaptive Projection Algorithm

This chapter will describe the extension of the single-grid projection algorithm defined in
Chapter 2 to AMR. We will extend the adaptive algorithm developed by Berger and Colella [18] for
hyperbolic conservation laws to construct an AMR projection method for solving the incompressible

Euler equations. For context, a brief review of the algorithm in [18] is in order.

4.1 AMR for Hyperbolic Conservation Laws

Berger and Colella [18] developed a locally adaptive methodology for solving hyperbolic
conservation laws. Their method refined in time as well as space, and maintained conservation at

coarse-fine interfaces.

4.1.1 Conservation Laws

In [18], the equation being solved is a system of hyperbolic conservation laws, which have

the form:

ou 0 0
oy

o T o fy =0, (4.1)
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where u is the conserved quantity, and f = (f;, f,)7 is the flux function. Integrating (4.1), using

the divergence theorem:
0
— [ uwdV = — [ V-f(u)dV (4.2)

—/BQ f(u) - ndS,

where n is the normal of the boundary of 2. So, the change in the integral of u over any given

domain will be equal to the integrated fluxes through the boundary of the area.
Using a conservative method will guarantee that u satisfies a discrete analog of (4.2). In

two dimensions, a conservative method will take the form:

Ul = U”—H(FH% Fts )—H(FH% Pt ) (4.3)

@,it+3,] @, i—%,j URNER UREES

U™ — AtD(F™3)

where UJ"; is a cell-centered approximation to the cell average of u, fmx’:r%% fyy:r%% u(z,y, t")dydz,
and F, and F, are numerical approximations to f, and f,, averaged over the cell-edges and over
the timestep. Because we use the same edge fluxes to update the cells on both sides of each edge,
U is conserved. In a numerical scheme, conservation implies that for any cell, or group of cells,
the integrated change in U over a time At will be the sum of the numerical fluxes F through the

cell-edges around the cells:

S UMT=> U —-AtY F-n, (4.4)
Q 0Q

Q

where ", represents the sum over all the cells (i, ) in a region €2, and ), represents a sum over
all of the cell edges which also make up the boundary 9f2. (For more background on conservative
methods for hyperbolic conservation laws, see LeVeque [46].)

To advance this equation on a single grid, we would follow the procedure outlined in
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AdvanceSoln(t, At)
FillGhostCells(t,
Compute F = (F,

1 1 1 1
Ut +At) = U(t) — At (F”+ R ) —aL (F;:]?+% - F;:;_%)

end AdvanceSoln

Figure 4.1: Single-grid update for hyperbolic conservation laws

Figure 4.1. First, we fill ghost cells around the physical domain with values which represent the

appropriate physical boundary condition on U. Then, we step through all the edges in the domain,
1 1

first computing the edge-centered fluxes Fots = (F;H_z , F;H_Q)T. Finally, we update U using the

conservative update (4.3).

4.1.2 Adaptive Methodology

In [18], block-structured local refinement is employed — the adaptive hierarchy of refined
grids used in that work is similar in structure to that described in Section 3.1. In this scheme,
refinement is temporal as well as spatial — fine cells are advanced using a finer timestep than is used
to advance coarser cells. The authors employ a recursive timestepping algorithm in which coarse
levels are updated, followed by successively finer levels. Proper nesting of refined grids (see Section
3.1.1) ensures that interpolation of coarse-grid data can provide boundary conditions for the fine-grid

updates.
Refinement in Time

Many implementations of time-dependent AMR algorithms, including those in [48, 67] ad-

vance all levels at the same global timestep. While this results in a simpler time-stepping algorithm,
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it is less efficient and less accurate due to the fact that the global timestep is restricted by the
stability requirements of the finest cells.
For stability, most explicit time-dependent schemes must satisfy some form of a Courant-

Friedrichs-Lewy (CFL) [31] condition,
u v
o= ma:c(—Aw, _Ay)At <C (4.5)

where C' is determined by the particular scheme being used. o is known as the CFL number.
For most explicit advection schemes, C' = 1. Note that this requires that as the mesh spacing is
decreased, there must be a corresponding decrease in the timestep.

When local refinement is used, different regions of the solution have different levels of spatial
refinement. If all levels are advanced at the same timestep, the coarse levels will need to be advanced
at a much finer timestep than would be dictated by the stability requirements of the coarse levels
alone, in order to ensure stability at the finest levels. This results in more computational work being
done on the coarse levels (where less resolution is required) than is necessary, and so is less efficient
than we would like. Also, the advection schemes we are using are more accurate at moderate CFL
numbers, and become more dispersive as the CFL number goes to zero [68].

For these reasons, when solving time-dependent equations with local refinement, we would
like to refine in time as well as space. This is known as subcycling. Advancing the finer grids at a finer
timestep ensures that the global timestep is not held hostage to the restrictive stability requirements
of the finer grid.

In [18], finer levels are advanced at a finer timestep than coarser ones. If level £+ 1 is a

factor of nf,e ’ finer spatially than the coarser level £, then the finer level will be advanced using a
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CompositeTimeStep(t°7%¢, Atc"s¢)
Advance U€Ts¢(£75¢) — [Ferse(terse 4 Agerse)
for n =0,npr — 1
Atfine — Tl:_efAtcrse
¢fine _ yerse 4 Apfine
Advance U7ine(tfine) — [fine(fine 1 Agfine)
end for
synchronize(U7€e(t75¢ + Aterse), [fine (gerse 4 Agerse))
end CompositeTimeStep

Figure 4.2: Pseudocode for composite solution advance for two-level case

timestep which is a factor of nf, s finer than the timestep on the coarser level:

1
—— At (4.6)
nref

Attt =

This results in a more efficient time-stepping procedure, since all levels are advanced using approx-

imately the same CFL number.
Time-stepping Strategy

First, consider the two-level case, with one coarse and one fine level. Assume that we have

a composite solution which is defined at time ¢°"%¢:

UCTSC (tC’l"Se) on QC’I"SE

. ) 4.7
Ufzne (tcrse) on szne ( )

Ucomp (tCTSC) — {

The goal of computation will be to advance the composite solution to a new time t°"%¢ 4 Ag¢"¢.
The timestepping strategy employed in [18] is to first advance the coarse level from ¢¢"%¢
to t7%¢ 4+ Atms¢. (Figure 4.2) This coarse-grid update will be structured exactly the same as the

single-grid update described in Figure 4.1. Specifically, we compute FP+2+¢ on Q%*, and apply the
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level-divergence operator componentwise to obtain the update for U:
U:=U — AtD'F*.

Then, the fine level will be updated n,.s times, with a timestep of Atfine = #efAt”’“ in a similar
way. Each fine-level update will be structured in the same way as Figure 4.1 for each fine-level grid
(recall that the fine level /¢ is made up of a union of rectangular fine-level grids), and will advance
the fine-level solution from "¢ to /"¢ + Atfi"¢, First, we will fill ghost cells around each fine-level
grid with appropriate values. Then we can advance each fine-level grid independently, as if it were
a single-grid solution. The only difference between the fine-grid updates and the single-grid update
is that ghost cells may now represent boundary conditions from the coarse level or from another
fine-level grid as well as physical boundary conditions. By using ghost cells to enforce appropriate
boundary conditions for each fine-level grid, we can separate the details of the AMR implementation
from the level update, and use essentially the same update for each grid as we used for the single-grid
update. This enormously simplifies addition of AMR capabilities to existing algorithms.

In general, for the higher-order hyperbolic schemes we will use, we will need to fill a border
of ghost cells more than one cell wide around each grid. When boundary conditions are computed,
we fill enough ghost cells to complete the stencils for each cell in the valid domain on each grid.

Recall that the boundary of a fine-level grid can be either a physical boundary, a coarse-fine
interface with the coarse level, or a fine-fine interface with another grid in the fine level (or some
mixture of the three). Filling ghost cells where 0/ is a physical boundary is straightforward,
using the the standard ghost-cell formulation used in a single-grid update. Where Q%€ is a coarse-
fine interface with the coarse level, coarse-grid solution values U¢"*¢ are linearly interpolated in time

to UcT®¢(t/i"¢) which is possible because the coarse level has already been updated to #°7%¢ + AtcTs¢,
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Then U°"*¢(t/i"¢) is interpolated in space using conservative linear interpolation to fill the ghost
cells around the fine level. Finally, where a fine-level grid abuts another grid at the same level of
refinement, the ghost cells are filled by simply copying U7 (#fi"¢) from the interiors of the other
fine-level grids. By copying values from the interiors of each grid at the current level, we can make
the interfaces between grids seamless, which will make the solution independent of how the refined
domain was decomposed into constituent rectangular grids, which is an important property of the
algorithm.

The fine grid solution will be computed for U (t/im¢),tfine ¢ {terse 4 gAline} < After
nrey timesteps, the fine level will reach the same time as the coarse level, t¢"%¢ + At¢"%¢. At this point,
the coarse and fine solutions must be brought into agreement, a process we will call synchronization.
In [18], synchronization has two goals. First, we would like to use the more accurate fine-level
solution wherever possible, and we also need to ensure that the advance of the composite solution
from #°7%¢ to /"¢ is conservative.

Synchronization of the coarse and fine solutions for the hyperbolic problem consists of two
steps. First, the coarse-grid solution at t"$¢ + At"*¢ is replaced where possible by the averaged

fine-grid solution:

Ucrse(tsync)i,j — A,U(Ufine(tsync))i’j on P(Qﬁne) (4.8)

where ¢*¥"¢ is the new time which both the coarse and fine solutions have reached.

Then, the coarse-grid solution is corrected to ensure conservation. For conservation, the
flux out of the fine cells across the coarse-fine interface must be the same as the flux into the coarse
cells through the interface. For example, consider a case where the coarse-fine interface is to the

left of cell (i,j) (Figure 4.3). In this case, we used F¢"°, ; to compute the update for cell (4, 7).

2
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Figure 4.3: Coarse and fine fluxes across the coarse-fine interface.

However, on the fine side of the coarse-fine interface, the flux across the (i — %, j) edge during the
same interval was n—lf S (Ffime) where the (—) notation represents a spatial average over the fine
edges which overlay the coarse-cell edge (i — %, 7). The sum is over the subcycled fine-level timesteps,
and the factor ﬁf accounts for the fact that Atfine = ﬁ”At"“. For conservation, we require
that the same fluxes be used in the updates on both the coarse and fine side of the interface. As
a rule, we consider the fine-grid information to be more accurate, so we would like to update the

coarse-grid cells adjacent to the interface using the fluxes computed during the fine-grid updates.

For cell (7,7), this means that the update (4.3) must be modified to use the fine-grid computed

fluxes:
crse crse
n+l,crse _ prn,crse At crse 1 Z fine )_ At ( crse  _ poerse )
Ui,j - Ui,j A.’L' (Fz7z+%,'] n'r‘ef <Fx >i—%7j Ay Fy,i7j+% y,@j*% . (49)
Adding and subtracting £L__Ferse, ; from (4.9), we get
’ PR
crse crse
U.n{rl = pyrerse _ At crse __ poerse _At crse _ [erse (4 10)
I bJ Az \ @itz Teii-3 Ay \wiits ~ Twii-3 :
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Atcrse 1 i
(=, - F )

Nyef
Notice that we have recovered the original single-grid update (4.3) with a correction for the effect of
the fine grid. This fine-grid correction can be expressed using the flux register and reflux-divergence
notation of Section 3.1.2. If we define the flux register 6F /"¢ as the difference in the coarse and

fine fluxes:

1

Nref

6Ffine —

Z(Ffine> _ [erse (411)

and use the reflux divergence operator Dp defined in Section 3.1.2, then (4.10) can be written:

1 Agerse Atcrse

n _ n,crse crse _ poerse _ crse __ prerse

Ui~ = Uij Az ( @,it4 ] z,m—%) Ay (Fy,z}H% Fyn,jf%) (4.12)
_AtcrseDR(éFfine)-

— Un,cTSE — Agcrseerse (Fcrse)i’j _ AtcrseDR(éFfine)i’j

(2]
We will call the operation of correcting the coarse grid solution by subtracting the reflux-divergence
of the mismatch in fluxes refluzing.

So, the coarse grid solution can be corrected to enforce the flux-matching condition required
by conservation by a simple refluxing operation, which can be performed separately from the coarse-
grid update. In the case of refinement in time, as in the algorithm of [18], the refluxing operation
is performed during the synchronization step, after al step, after all of the relevant coarse and fine
updates have been performed.

Once the fine solution has been averaged onto the coarse level and the coarse fluxes have
been corrected by refluxing, then the advance of the composite solution from time t%¢ to t°"%¢ +

At°"5¢ is complete.
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level O level 1 level 2

Figure 4.4: Schematic of subcycled timestep
4.1.3 Recursive Timestepping Algorithm

The two-level algorithm in the previous section is generalized in [18] for any number of
levels by redefining the algorithm as a series of recursive single-level advances. Figure 4.4 shows a
sample global timestep with 2 levels of refinement; the first level of refinement is a factor of 2 finer
than the base level, while level 2 is a factor of 4 finer than level 1. To update the composite solution,
we do a level advance for level 0 from time t° to time t° + At®. Then, we perform a level advance
on level 1, with At! = %Ato. Since the timestepping is recursive, we then will do 4 level advances
on level 2, each with a timestep of At? = $A¢'. This will bring level 2 and level 1 to the same time.
We then synchronize levels 1 and 2. Once level 1 and level 2 have been synchronized, level 1 can be
advanced again. Once again, At' = LAt?. Then, level 2 is advanced four times with At? = T A¢!

At this point, all the levels have reached the new coarse time. So, we then synchronize all of the
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LevelAdvance((, t, Atf)

fillGhostCells(t)
compute Ff, Ff
L4l ¢ — 77E(4L At (e ¢ Att (e 14
UL + iy = Uy = 85 (B g~ Framy) =85 (Fliies — Flass)

Update Flux Registers:
if (0 < lpaz) OFTT = —F¢.nlfl  on 00!
if ((>0) 6F'=6F'+ L (F'-n’ ;) on 0Q°

nl
ref

if (¢ < lyqe) then
for n = O,nfef -1
Athrl — LAtl
nief
tr = ¢+ p A
LevelAdvance(£ + 1,1 Atf+t)
end for
Ut(tt + At .= U (t" + At') — AtDg(§F1)

end if

end LevelAdvance

Figure 4.5: Pseudocode for recursive timestep used for hyperbolic conservation laws in Berger and Colella

levels, which will result in the final composite solution at time #° + A0,

The function Level Advance((,t‘, At*) (Figure 4.5) will advance the level ¢ solution from
time ¢¢ to time #¢ 4+ At‘. Because this function is recursive, all finer levels (which initially will also be
at time #¢) will also be advanced to the new time, and the appropriate synchronization operations will
be performed so that the entire composite solution for levels £..¢,,,,, will be advanced to the new time.
So, to advance the entire solution from time ¥ to time t° + At°, we call Level Advance(0,t°, At?),
which will advance the entire composite solution through a series of recursive level advances.

Once the ghost cells have been filled in the same way as the two-level case, each grid in level
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¢ can be updated independently, using the same update method as in the single grid case. First,
we compute the fluxes F, and Fj for each edge. Then, we compute the update to U* using the
single-grid update defined by (4.3). At this point, the appropriate flux registers are updated. If a

finer level exists, then the level £+ 1 flux register is initialized with the coarse level flux (—F¢-nZf}),

where nza—; is the local normal of the coarse-fine interface between levels ¢ and £ + 1. If a coarser
level exists, then the level ¢ flux register is incremented with the fine-level flux from this timestep.

Once all the cells in level £ have been updated to time t¢ + At’, we can recursively advance
any finer levels, using the same timestepping procedure. The finer level £+ 1 is advanced nfe  times,
starting at the level ¢ initial time ¢¢. The fine timestep will be Atft! = tAtf .

Once the fine level has been advanced nf,e s times, it has reached the same time as the level
¢ solution, which is t¢ + Atf. At this time, the solutions on levels £ and £ + 1 are brought into
agreement: the level £ solution U*¢(t¢ + At%) is replaced by the averaged fine solution Ut (¢! + At?)

wherever level £ is covered by refinement, and the level ¢ solution is corrected by refluxing the

mismatch of fine and coarse fluxes to ensure conservation.

4.2 Multilevel Discretization of the Incompressible Euler equa-

tions

We would like to extend the AMR, methodology developed in the previous section to the
solution of the incompressible Euler equations by extending the single-grid algorithm presented in
Section 2.6. In the single-grid algorithm, we advance the velocity field u and a passively advected
scalar field s from time ¢" to time t"™ + At. Also in that algorithm, a lagged pressure field pn+% is

computed to enforce the incompressibility constraint. As in the previous section, we will define a
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solution on each level uf, s¢ and the associated pressure on each level 7¢. Also, as in the previous
section, we will subcycle in time, so during a level ¢ timestep from t¢ to t¢ + At¢, the level £ + 1
solution will be advanced nf,e ¢ times. So, in a single level 0 timestep, we will compute solution values

for each level £ > 0 at the following times:

nt-1_
(89, s8(t9), 1 € {t1 + kALY (4.13)

Because the pressure is lagged in this algorithm, it will also be defined at lagged times on each level,

or

ot@th,tb e {1 + (k- %)At‘Z Z;{ (4.14)
4.2.1 Level Algorithm

To extend the recursive subcycled algorithm of Section 4.1.3 to the projection algorithm
described in Section 2.6, we will first need to express the single-grid projection algorithm as a level
update which will advance the level ¢ solution from time t¢ to t¢ + Atf. This is straightforward. A

brief outline of this level update is as follows:

1. Compute advection velocities u?-¢ as in Section 2.6.1, including level ¢ edge-centered (MAC)

projection for advection velocities.

2. Compute advective update for scalar:

sttt + Atf)m = st (th) — At (FS

£ St At (S St
Ao \Vitd,j Fi*%d) (F Fii-y)

Aye Zr]“"% 3]~ 2
3. Compute intermediate velocity field u***:

N n+3,0
ut = uf (1) — At'(u- V)ul;
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4. Project intermediate velocity field to enforce divergence constraint:
Solve Lfmt(t* + AT#) — DOC st

u‘f(t‘f + At‘f) =l At‘ZGCCJyr‘Z(t‘ + ATte)
4.2.2 Level Operators

The outline in the previous section left open the issue of extending the cell-centered opera-
tors G¢“ and DY defined in Section 2.5.2 to a level-operator formulation. In most cases, the level
operator will simply be the corresponding single-grid operator, with a suitable coarse-fine boundary
condition for use when the normal stencils cross a coarse-fine interface with level /—1. When defining
coarse-fine boundary conditions for these operators, redefining them as edge-centered operators with
appropriate cell-to-edge and edge-to-cell averaging (equations (2.62) and (2.63) ) will prove useful.
As in Section 4.1, use of ghost cells around each fine grid will simplify the application of boundary

conditions by separating the boundary conditions from the operator discretization.
Gradient

We first define the level operator version of the edge-centered gradient, G, which we
will then extend to the cell-centered operator GY“*¢ through the use of (2.63), repeated here for
convenience:

GC ¢ = AF9G0. (4.15)

G* will be the level-operator version of the edge-centered gradient G, which was defined in

(2.52). On grid interiors,

¢ Y] ¢ ¢ ¢
ot N i Pij Pirrjr T Pic1 1 = Pirr i1 — Pic1 o1 T (4.16)
it3.d N ’ 4Ny’ :
¢ ¢ ¢ ¢ ¢ ¢
at _ (¢i+17j+1 + Giv1, -1 — Picrjr1 — Pic1jo1 Pij+1 — P )
1 — .

L+ 3 N ’ Ayl
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Where this stencil crosses a coarse-fine interface with the coarser level £ — 1, we will use the quadratic
interpolation operator I from Section 3.1.2 to fill ghost cells around the level ¢ grid, which will then
be used in the normal stencil for G*.

Then, definition of the cell-centered level-operator gradient G¢ is straightforward, using

the edge-to-cell averaging operator Av?—~¢":

GOty = AvF=CGly. (4.17)

Note that the G* operator contains the coarse-fine boundary conditions for G¢“*¢, since the edge-
centered gradient is defined on coarse-fine interfaces with coarser levels through the coarse-fine
interpolation operator I. For this reason, it will not be necessary to explicitly define a coarse-fine

boundary condition for the cell-centered gradient operator.
Divergence

Similar to the level-operator gradient, we will first define the level-operator version of the
edge-centered divergence operator, Df. We can then use (2.62) to define the cell-centered level-
operator divergence D¢

Recall that the edge-centered divergence operator D is a cell-centered divergence of edge-

centered quantities. We define the level-operator D¢ of the edge-centered vector field u = (u,v)? in

the same way:
¢ ¢ ¢ ¢
us, s —ut . v — U
i+3,] 1—3,] 1,j+35 L]~ 3
Dfu = 2 2 4 2 2

Azt Ay

(4.18)

Since the edge which makes up the coarse-fine interface with the coarser level £ — 1 is considered to
be a part of the level £, there is no need to specify a coarse-fine boundary condition for this operator.

To define the cell-centered divergence operator D! we will once again draw on the
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definition of the cell-centered divergence operator in (2.62):

DY tu = DY (AvCEu). (4.19)
where Av“~F is the cell-to-edge averaging operator.
So, the boundary condition for the level-operator cell-centered divergence D¢ where the

stencil crosses a coarse-fine interface with level £ — 1 is defined by the boundary conditions set for
u’ before averaging to edges. Examination of the level-advance algorithm in the previous section
shows that in most cases, the divergence operator will be applied to the intermediate velocity field
u**¢ to compute the right-hand-side for the level projection. Because of the subcycled nature of
the level ¢ timestep, it is not clear what, if any, coarse-grid quantity would be appropriate to use as

*C (for example, u**~! has the wrong centering in time).

a coarse-grid boundary condition for u
For this reason, it was decided to use linear extrapolation of u‘ to compute ghost-cell values for u’

at coarse-fine interfaces.
Advective Terms

We also must compute advective terms in the level update, both the [(u - V)u]’ terms in
the momentum equation and the F*f = V - (us) term in the advection update, as well as in the
computation of the advection velocities. This is similar to the method described in Section 2.6.1,
with the addition of suitable coarse-fine boundary conditions. This part of the level advance has
a hyperbolic character to it, and is similar to the hyperbolic conservation laws solved in Section
4.1. This consists of extrapolating values for u and s to edges at time (t¢ + AT#), then using the
upwinded values to compute the advective updates. Because of the hyperbolic nature of this part
of the update, we use the same coarse-fine boundary conditions that were used in 4.1, which was

conservative interpolation of coarse solution values in time and space. Before the tracing step,
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coarse-grid solution values are interpolated in time to t¢, and then are conservatively interpolated in
space to fill ghost cells around each grid. Once this is done, the single-grid tracing and upwinding
algorithm of Section 2.6.1 can be used in a straightforward manner.

The computation of advection velocities includes a level-operator version of the edge-

centered projection described in Section 2.6.1. We first solve:
Li¢t = D' (u"t3h), (4.20)

and then correct the velocity field to make it divergence-free:
uADt — gt st Gld)’Z (4.21)

Note that we have not specified the coarse-fine boundary condition for ¢¢ in (4.20) and (4.21); we

will defer this issue until the specification of the entire adaptive algorithm in Section 4.5.

4.3 A Simple Recursive Timestep

Once the level advance algorithm of the last section has been defined, it is straightforward
to extend the methodology of Berger and Colella to the incompressible Euler equations. To ensure
proper coupling between levels, the appropriate velocity and scalar flux registers 6V and ds are main-
tained, and coarse grid velocities and scalars are corrected to ensure conservation by the refluxing
operation described in Section 4.1.2. The pseudocode for the recursive timestep for this algorithm
is shown in Figure 4.6. Unfortunately, this algorithm suffers from two significant problems. Both
of these issues were identified by Almgren et al. [5] in the construction of their adaptive projection
method for the incompressible Navier-Stokes equations.

First, the composite velocity field will not satisfy the divergence constraint based on com-

posite operators. We would expect that since the divergence constraint was enforced using level
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EulerAdvance(/, t¢, Att)
FillGhostCells(¢, t¢)

Compute udPt
Compute advective fluxes: F5¢
(8 + Ay 1= sl (1) = AL (S, - FOL ) - & (R
Update scalar flux registers:
if (£ < lopar) 0stFE = —FS.nlhl on 90+
if (¢>0) 6s* =ds" + #;;(FSJ ‘nb,)  on 00
Compute velocity advection [(u - V)u]¢
Update velocity flux registers
if (< lipgz) OV = —(uAPL nS e/t on 90!

if (0> 0) 6VE =6V + Lo (—(uAPl - n ) uheth -ty on 90

ut = uf(th) — At(u- V)u]lf
Solve Lint — DCC-ty**t
wl(t + At) == ust — AHGOCHt
if (¢ < lyqe) then
for n = O,nfef -1
Attt = W;Atl
HHL — 4 4 p At
EulerAdvance(f + 1, ¢+, Agttl)
end for
(s(t8 + AtY), st + AtY)
AvgDown(uf(tf + At?), utt (¢ + At))
Reflux: s®(t¢ + Att) = s(t¢ + Att) — At*Dg(ds%)
Reflux: uf(t + AtY) = u’(t’ + At’) — At*Dr(5V?)
end if

end EulerAdvance

AvgDown

Figure 4.6: Naive extension of Berger-Colella algorithm to incompressible Euler
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operators in a level-operator based level projection, that the composite pressure field 7 computed
by the level projections will not satisfy the elliptic matching condition described in Section 3.2.1.
For example, if the initial velocity field is divergence-free, and (u - V)u is independent of time,
enforcing the divergence constraint using level projections corresponds to Dirichlet-only matching
for the pressure solve. An equivalent statement is that there is no sense in which the jump in the
normal velocities [u-ncr] is zero at coarse-fine interface. Another issue is that velocity refluxing has
modified the coarse-level velocity fields in a row of cells one-cell wide around coarse-fine interfaces
with the finer level. This velocity was not included in the coarse-level level projection, and so will
cause a violation of the divergence constraint.

Also, this scheme will not be freestream preserving. Although we project the advection

velocities u?

D with an edge-centered projection (Section 2.6), the projection we use is also based on
level operators, and so the correction field ¢ also does not satisfy the elliptic matching condition. This
means that while the advection velocities are divergence-free based on a level-operator discretization,
they are not generally divergence-free based on composite divergence operators.

As a result, errors in advection will occur at coarse-fine interfaces. While our advection
scheme will be conservative due to refluxing, it will not be freestream preserving. The resulting
errors will be apparent in the evolution of a scalar field which is initially constant throughout the
domain. Because of the non-solenoidal nature of the advection velocity field, this scalar, which
should maintain its constant value throughout its evolution, will begin to show errors at coarse-fine
interfaces, as it sees the effects of local contractions and expansions of the non-solenoidal advection

velocity field at the coarse-fine interfaces.

For example, consider the two-level case. Assume that a scalar s has a constant value sg
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in a region surrounding a coarse-fine interface. In this case, the coarse-grid update will produce the
correct solution, because the fluxes based on the coarse-grid solution will balance and lead to no net

change in s. The flux register for this coarse-fine interface will contain

osttt = —soudPt nop + (souP L ngp)
—
= so(—u??f . ncp + Xz(u““ll+1 ‘nep)), (4.22)
Nref
where u? is the advection velocity, the summation is over the subcycled fine-level timesteps, and

the () denotes an arithmetic average of the fine-level edge-centered values on the coarse-fine interface.
Since the coarse-grid update has already produced the correct solution, we would like the refluxing

correction to have no effect. For that to happen, (4.22) implies that the coarse-grid advection veloc-

AD,¢ AD, 041

ities u -ncp must equal the average of the fine-grid advection velocities ﬁ > (u “nop).
However, because the coarse- and fine-grid advection velocities were computed using independent
Taylor extrapolations and single-level elliptic solves, there is no guarantee this will be the case. As
a result, we expect that the refluxing operation, while it preserves conservation of s, will generate
violations of freestream preservation, and s will not equal sg in the cells immediately adjacent to
the coarse-fine interface. Once these errors have been made, they will then be advected throughout
the flow, contaminating the solution in regions away from coarse-fine interfaces.

In this work, we address these issues by constructing a multilevel projection which is ap-
plied at the end of each coarse timestep, after the refluxing operations have been performed. This
will ensure that the composite velocity field satisfies a composite divergence constraint. Also, we will
introduce a supplementary advected quantity to track freestream-preservation errors. We can then

use this quantity to compute corrections to the advective velocity field to make the scheme approx-

imately freestream preserving. In [5], these issues are resolved using somewhat different techniques;
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a comparison of the two algorithms will be deferred until Section 4.6.1.

4.4 Additions to Hyperbolic Algorithm for Incompressible
Flow

As described in the previous section, a naive extension of the algorithm of Berger and
Colella to the incompressible Euler equations suffers from two serious weaknesses, both springing
from the fact that the divergence constraint has been applied on a level-by-level basis, rather than

in a composite sense. In this section, we describe the steps taken in this work to fix these problems.

4.4.1 Composite Projection

We would like our composite velocity field u to satisfy the divergence constraint (2.40)
based on a composite divergence operator, rather than one based on the level divergence operator
used in the level projections.

After the subcycled level solves, the resulting composite velocity field will not, in general,
satisfy the divergence constraint based on composite operators, even though we performed level
projections on the velocity field during each level solve. This is the same effect seen in Section 3.2.1.
While we used pressure information from coarser levels as a boundary condition for the finer grids,
this represents only a Dirichlet boundary condition for the pressure — Neumann matching has not
been enforced. Once again, the solution on the finer levels has seen the effect of the coarser grids,
but the coarse-level pressure field has not seen the effect of the finer levels.

In addition, the refluxing operation for velocity has altered the coarse-level velocity field,
adding a set of velocities to a ring of coarse cells one cell wide around the projection of the fine grids.

This added velocity field was never projected at all, and so a correction must be made to ensure that
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the refluxed velocities do not cause the composite velocity field to violate the divergence constraint.

To correct for these problems, we will define a composite projection, which will be based on
composite operators and will be applied to the composite multilevel velocity field. This projection
will be applied during the synchronization step, after the refluxing operations have been performed;
for this reason, we will call this multilevel projection the synchronization projection

While we have already defined the cell-centered Laplacian operator we will use in this
work in Section 3.1.2, we will need to define composite analogs of the single-level cell-centered
DY and GYC operators defined in Section 2.5.2. We expect that they will be similar to the
cell-centered level operators defined in Section 4.2.2 (which already contain coarse-fine boundary
conditions with coarser levels), with the addition of coarse-fine boundary conditions in the form of
matching conditions with a finer level, if it exists. As in Section 3.1.2, we also expect that away
from coarse-fine interfaces, the composite operator discretizations will reduce to the appropriate
single-level cell-centered discretization. We also expect that definition of the cell-centered operators
DY and G as edge-centered operators with appropriate cell-to-edge and edge-to-cell averaging
(equations (2.62) and (2.63) ) will prove useful, since we have already defined composite MAC-

centered divergence and gradient operators in Section 3.1.2.
Composite Divergence

In Section 3.1.2, we defined a composite edge-centered divergence operator. Qur composite
cell-centered divergence operator will be similar. Away from the coarse-fine interface, as usual, the
divergence will be the normal cell-centered D¢ operator of (2.62). So, on the fine grid, away from
the coarse-fine interface,

DCC7compu — DCCJineufine' (423)
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On the coarse grid away from the interface,

DCC,compu — DCC,crseucrse' (424)

We will once again need to define a special composite operator wherever the stencil of the
normal coarse or fine divergence crosses a coarse-fine interface. As seen in (2.62), the cell-centered
divergence operator can be defined as an edge-centered divergence (2.51) of edge-centered velocities
created by averaging cell-centered velocities to edges. At coarse-fine interfaces, we will compute the
fine-level edge-centered velocities by using linear extrapolation to compute cell-centered velocities in

ghost cells surrounding the fine grid, and then using these values in the standard Av®—¥

operator
of (2.61). We will then define the appropriate coarse-level edge-centered velocity on the coarse-
fine interface edge as the arithmetic average of the edge-centered velocities used to compute the

divergences on the fine side of the coarse-fine interface.

So, on the fine side of the coarse-fine interface,

DCC,comp,CFu — Dfine (uedge,fine) (425)

uedge,fine — AUC—)Eufine

where ghost-cell values for u/¢ along the coarse-fine interface are computed using linear extrap-
olation of the interior values of u/¢, for consistency with the level-operator divergence operator.

On the coarse side of the coarse-fine interface,

DCC7comp7CFu — perse (u8d98707‘56) (426)
edge,fine ine
uedge,crse — {(u 9ef ) on 6Qf
Av©7Eycrse  elsewhere.
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Composite Gradient

We defined a composite edge-centered gradient operator in Section 3.1.2 when we defined
the “fluxes” in the composite Laplacian operator. We will use this definition, along with (2.63),
to construct our composite cell-centered gradient operator. Since most of the gradients we will be
computing will be of quantities like pressure, which are defined by solving an elliptic equation, this
is appropriate. However, we will need to alter the operator on the coarse side of the interface due
to the structure of many of the fields to which we will apply the gradient operator.

We will use the edge-centered composite gradient G°°™P defined in Section 3.1.2, where
quadratic coarse-fine interpolation, along with flux-matching, were used to define the gradient op-
erator at coarse-fine interfaces. We reiterate here for completeness.

Away from coarse-fine interfaces, the composite gradient is simply the coarse- or fine-level

edge-centered gradient of (2.52):

comp +comp Gcrse¢crse on (erse
G ¢ = { Gfine¢fine on Ofine (4'27)
¢fine — [(¢fine, ¢crse) on 60[

On the coarse-fine interface, we define the fine edge-centered gradients by using the quadratic
coarse-fine interpolation operator from Section 3.1.2 to define ghost-cell values for ¢ along the coarse-
fine interface, and then using the normal fine-level G' operator to compute the edge-centered gradi-
ents. The coarse-level values for the gradient along the coarse-fine interface will be defined as the
arithmetic average of the fine-level gradients which overlie the coarse edge.

We can then average this edge-centered composite gradient to cell centers to define a cell-
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Typical Synchronization Correction Field
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Figure 4.7: Typical synchronization correction, corr. Fine grid is to the right of the coarse-fine interface.

centered composite gradient operator GE€°™P  as in (2.63), which is repeated here for convenience:
GCC,comp¢ — A,UE—>CGcomp¢7 (428)

In practice, the only place we will actually apply the composite cell-centered gradient
operator will be during synchronization operations. While the discretization of the synchronization
projection will be discussed in the next section, the structure of the resulting correction fields
necessitated a modification to the definition of the gradient operator. In most cases, the source
terms for the synchronization projection are primarily in a set of cells one cell wide on the coarse
side of the coarse-fine interface, in essence a d—function in the direction normal to the interface. A
0—function source distribution to Poisson’s equation implies a solution which, although continuous,
has a discontinuity in the first derivative (See Figure 4.7). In this case, computing the edge-centered

gradients using G°°™P and then averaging to produce a cell-centered gradient will wash out the
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structure of the gradient field near the interface because the strongly positive and negative gradients
on either side of the discontinuity will cancel. The solution to this problem is to compute the
derivative in a one-sided way from the coarse side of the coarse-fine interface and use this one-sided
gradient for the coarse cell immediately adjacent to the coarse-fine interface. This preserves the
structure of the correction across the coarse-fine interface.

So, in regions of the fine grid away from the coarse-fine interface, we compute the cell-

centered gradient fields according to (2.63):
GCC,compqscomp _ GCC,fineqsfine on Qﬁne_ (429)
On the coarse grid away from the fine grid, we likewise use the standard coarse discretization:
GCC,comp¢comp — GCC,crse¢crse on Qcrse. (430)

On the fine side of the coarse-fine interface, we first use the quadratic interpolation operator (Section
3.1.2) to compute cell-centered fine-grid ghost-cell values. Then, following (2.63), we compute edge-

centered gradients, which are then averaged to cell-centers:

GCC,comp¢comp — GCC,fine ¢fine (431)
¢fine — I(d)fine, ¢crse) on aQﬁne

On the coarse side of the coarse-fine interface, we will use linear extrapolation of the edge-
centered gradients to provide an edge-centered gradient on the coarse-fine interface. For example,

if the coarse-fine interface is located at the (i — ,j) edge (see Figure 4.8), then we compute the

cell-centered gradient at coarse cell (i, j) as follows:

(Gedge7crse¢)i_%7j — Q(Gedge,crsed))H_%J _ (Gedge7crse¢)i+ (432)

3 .
5]

(GCC,compgb)i,j — AUE—)C (Gedge,crsegb)'
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Figure 4.8: Computing the composite gradient on the coarse side of a coarse-fine interface for cell (3, j),
when coarse-fine interface is located at (i — 1,;) edge. Edge-centered gradient at (i — 3,j) is computed
by linear extrapolation of edge-centered gradients at (i + 3,7) and (i + 2,5). Edge-centered gradients at
(i + 3,7) and (i — 1,) are averaged to cell center to get G*°™P¢ at (3, j)

Away from the coarse-fine interface, G¢%9¢¢"%¢ ¢ will be the edge-centered gradient of (2.52).
Discretization of Composite Projection

During the synchronization step, we will perform a synchronization projection to ensure
that the velocity field satisfies the composite divergence constraint. If we separate the pressure field

into the contribution from the level projections and the remaining correction,
=T+ e, (4.33)

then constructing the synchronization projection becomes straightforward. Since the correction due
to 7 has already been included in the velocities, we now use e, to enforce the composite constraint
by first solving:

1
Lcompes — NI DC’C’7compu(tsync) (434)

eibase I(eﬁbase,eﬁbase_l)
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with appropriate physical boundary conditions (if necessary), and then correcting the velocity field:

urer = gtew _ AtsyncGCC7compeS (435)
lhase — lhase ,lbase—1
€s - I(es )€ )7

where GE©>¢°™P is the one-sided composite gradient operator defined in Section 4.4.1, and At*¥"¢
is the timestep of the coarsest level which is at ¢°¥™¢, in essence the timestep over which the syn-
chronization is being applied. The appropriate physical boundary conditions for e; will be the
homogeneous form of the boundary condition applied to the level pressure w. For solid walls, this
will be a homogeneous Neumann boundary condition.

The projection discretization we are using is approximate, in the sense that D¢¢-compGCC,comp £
Leom? | where L°™P is the 5-point Laplacian operator, L¢O™P = DeomPGeomp (DeomP and G™P are
the edge-centered divergence and gradient operators). In this case, the discrete projection operator
is:

P =1 — AvP=OGeemp(eomp)=1 peomp 4,0 =F (4.36)
The use of the averaging operators are what make this projection approximate. Because the dis-
cretization of the projection operator used in this work is approximate, the projection is not idem-
potent; in other words, P? # P.

We would like to show that repeated application of the composite projection will be well
behaved, in that it will be stable, and that the resulting velocity field will converge to to a consistent
solution. For a uniform grid with periodic boundary conditions, Lai [44] showed using Fourier
analysis that this projection discretization is stable, in that ||P|| < 1, and that repeated application

of the projection will drive the divergence to zero, or

DCC,comp(PNu) =50
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Max(div) vs. # of Projection Applications
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Figure 4.9: Max(divergence) vs. number of repeated projection applications

as N — oo, where P" (u) represents the repeated application of the projection N times.

To demonstrate the effectiveness and stability of this composite projection, we repeatedly
applied the composite projection to a sample problem and evaluated the results. This was performed
on the three-vortex test case described in Section 6.1.3. Figure 4.9 shows Maxz(D®™Pu) against
the number of times the projection was applied. It can be seen that the composite divergence does
go to zero as the projection is repeatedly applied. Adding more levels of refinement affects the
rate that the divergence is decreased, but does not appear to affect the general behavior. Also,
we would expect that each new projection has a smaller effect on the solution, as the velocity field
converges toward one which is completely divergence-free. The amount that each application of the
projection changes the solution (in other words, P™— P"*1) is equal to (I — P)P", which from (2.46)
is just the gradient piece, GE“*°™Pe. Figure 4.10 shows maz(GE°°™P(e)), which is the maximum
that the solution is changed in a given application of the projection. As can be seen, this quantity

decreases monotonically as the projection is repeatedly applied. The magnitude of the correction is
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Max(Grad(phi)) vs. # of Projection Applications
Max(G(phi))
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Figure 4.10: Max of the gradient piece returned by the projection vs. number of repeated projection
applications.

much larger in the first application of the projection because that is where the physical boundary
condition (solid walls, in this case) is being enforced; the velocity field is initialized as if it were in

infinite space, and then the initial projection also enforces the physical boundary conditions.

4.4.2 Freestream Preservation

To correct errors in freestream preservation, we follow the volume-discrepancy approach
used by Propp [51], which in turn is based on work by Acs et al. [1], and Trangenstein and Bell [66].

We start with a scalar field initialized to one everywhere in the domain, which we shall call
A. As we advance the solution, we also compute advective updates to A, using (2.66) and following
the algorithm detailed for passive scalars in Sections 2.6.2 for the single-grid case, and which will be
described in 4.5.2 for the multilevel case. Since we know that A should remain one, A # 1 is a good
indicator of the advection errors that are being made.

We will compute a correction to the advection velocities which will return A to one, undoing
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the errors which have been made. Since we are correcting for errors in the advection velocities, we
cast the correction as a velocity field u, which we add to the advection velocities. We would like our
correction velocity field to undo freestream errors which are manifest by A # 1. From the advection

equation (2.66),
An _ An+1

D(uA) = A7

(4.37)

Since we would like to return A to 1, we set A”t! to one. Also, we assume that the errors in A are

small, and so we treat the A inside the divergence as constant and pull it outside the divergence:

A" —1
D(u, + utP) = A (4.38)

AD

Since u? is essentially divergence-free, Du?” = 0, and we are left with the correction field. If we

define the correction field up as a gradient,

u, = Ge,, (4.39)

then we are left with an elliptic equation to solve:

A" —1
LCA = W, (440)

where L is the Laplacian operator. Similar to the projection operator, the physical boundary con-

ditions for e, are

Vepy =u,-n, (4.41)

which in the case of solid walls reduces to a homogeneous Neumann boundary condition on ey .
Solving (4.40) for ep, we can then compute the correction velocity field u, = G™Pey,

which we then add to the advection velocity field in future timesteps. Since this will be done as a
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synchronization operation, we will take At to be At*¥"¢. Note that both u, and u? have edge-
centering. The correction velocity field u, will tend to correct the errors made in advection and will
work to drive A back to one.

In practice, we make two modifications to (4.40). First, we assume that the A in the
denominator of the right hand side is approximately one. In that case, the right hand side becomes
A1

“57 - This change is made to ensure that the elliptic equation is solvable. Also, we include a scaling

term, 1, to adjust the strength of the correction. So, the equation we solve during the synchronization

step is:
A-1
Ley = Wﬁ (4.42)
ef\base — I(ef\base765¥)ase_1) on O fpase.

Note that we have explicitly included the coarse-fine boundary condition for the case where £, > 0.
In this usage, the parameter n has a meaning — it is the reciprocal of the number of £,s. timesteps
it will take for A to return to one. We have found that values for n which are greater than one are
unstable, because they introduce an overcorrection. If we express the modified evolution of A using

(4.42), we find that it is a forward-Euler update of the equation

DA g
i = A_t(A -1). (4.43)

For values of ) greater than one, the forward Euler scheme we are using is unstable. So, n <1 for

stability. We have found that 7 = 0.9 has worked well for the problems examined in this work.
When the gradient field u, is added to the advective velocity field u?, then u? is no

longer divergence-free, even in the grid interior regions. For this reason, we must use convective

differencing when computing the advective terms of the velocity update, rather than a conservative
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discretization. This is why the single-grid algorithm outlined in Section 2.6 employs convective

differencing when computing the advective terms in Section 2.6.3.

4.5 Complete Multilevel Algorithm

The following sections will describe the recursive timestep used to advance the solution on
level ¢ from time t¢ to t¢ + Att. A basic pseudocode outline of our recursive level update is shown in
Figure 4.11. Like the recursive timestep for hyperbolic conservation laws described in Section 4.1.3,
the level £ timestep implicitly includes the subcycled advance of all finer levels and synchronization
with those levels, producing a composite solution for levels finer than and including level £.

The synchronization strategy will be somewhat different, however. In Section 4.1.3, levels
are synchronized in coarse-fine pairs. For example, in a three-level solution, at the end of a level 0
timestep, they first synchronize levels 1 and 2, and then synchronize levels 0 and 1. In this work,
we will perform synchronization operations which involve elliptic solves over all levels which have
reached the same time, which we will call ¢°¥¢. We do this because of the results of Section 3.3, in
which it was shown that structuring a multilevel elliptic solution as a series of level solves and then
making corrections to coarse-fine pairs of levels is less accurate than performing a single multilevel
solve. This means that the elliptic solves used in the composite projection and in the freestream
preservation algorithm will be performed for all levels which have reached ¢%¥"¢. This is done by
testing to see if the £ — 1 level has reached the time ¢*¥™¢ before performing a synchronization with
the current level £ as £y qe-

We will now describe each step in the algorithm in turn.
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EulerLevel Advance((, t¢, Atf)
Compute Advection Velocities u

Compute Advective Fluxes FS:¢ FA¢

AD¢

Compute Advective Updates:

0 (40 A A AIN S,L _ St At S,L _ St
s+ AF) =81, (1) — R (Fx,z‘+%7j Fm—%,j) av \Fyigrs = Fyii-g
L4t 0y . AL (40) _ At AL _ At _ At (A _ At
A+ AF) = Ay (F) = K (Fz,i+é,j Feimyi) = s \Fpies — Foiima

Predict uhe!f

o, { n+i
u; = “f,j(tl) = At[(u-V)ul; ;
Update advective and velocity Flux Registers:

if (¢ < l;02) then

§sttl = _FS:t. nza—; on ONH1

SAUt = —FAL.nf} on 00!

SVt — _(uADJ . nlC+F1)uhalfJ on an+1
end if

if (¢ > 0) then

§st = st + = (F5¢ - nl,) on 9N
ref

SAL = 6A" + #(FA’Z -nb ;) on ON'

ref

SVE= Vi + L ((uAPf -nlCF)uh‘”f’f) on 90f

Ny

end if
Project u**¢ — uf(t* + At?) :

Solve Lin! = L DOC:ty==t

wl(# + At = wt — AHGOCrt
i (€ < fnaz)

At = LAt
ref

for n = O,nfief -1
EulerLevel Advance(£ + 1, ¢ + nAt‘T1 A+l
end for
if (t* + Att <t~ + At*~!) Synchronize(,t" + At¢,t')
end if

end EulerLevelAdvance

Figure 4.11: Recursive level timestep for the incompressible Euler equations.
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4.5.1 Computing Advection Velocities

First, we need to compute advection velocities with which to compute advective updates
for scalars and velocities. This will be similar to the single-level algorithm in Section 2.6.1. First, we
must fill ghost cells around each grid on this level. Coarse-fine boundary conditions are computed by
conservative linear interpolation in space and time of the velocities on the coarser level. Once again,
because we have already advanced the level £ — 1 solution to time t/=! + At~ we will be able to
interpolate the old and new coarse-level solutions u®~!(#*~1) and u*~* (¢t~ + At*~1) in time to #‘.
Then u‘~!(#%) is spatially interpolated using conservative linear interpolation to fill the ghost cells
around the level ¢ grids. Due to the stencils involved in the predictor step, it is necessary to fill a
ring of ghost cells more than one cell thick to have all the necessary information for this step. Once
again, ghost cells in zones where level ¢ grids abut each other are filled by copying u‘(t‘) solution
values from the interiors of other level ¢ grids, and physical boundary conditions are set in the same
way as for the single-grid problem.

Once the ghost cells have been filled, we then predict edge-centered velocities u"tz in
exactly the same way as was done in Section 2.6.1. We first use a Taylor extrapolation to predict
left and right (top and bottom for the y—direction) edge-centered values at time t¢ + ATtl, and then
choose the upwind state at each edge.

Then we perform an edge-centered projection on these predicted velocities to ensure that
the advection velocities are divergence-free. This is also a straightforward extension of the single-grid
edge-centered projection described in Section 2.6.1. We first compute the edge-centered divergence
of untst using the operator D. Note that there are no explicit coarse-fine boundary conditions

necessary for this operator, because we have predicted edge-centered velocities along the boundary
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with level ¢ — 1 using the interpolated coarse-level velocities. We then solve
Lf¢! = Dlutz! (4.44)

¢ = I(¢l,%[wf*1+ef*1]) on 9Nt (4.45)

s

The coarse-fine boundary condition on ¢! is designed to ensure matching with the total pressure
field, which is 7 4 e,. We solve for ¢ using the level solver algorithm outlined in Section 3.2.6.

We then correct the edge-centered advection velocities as in Section 2.6.1, using the level-
operator version of the edge-centered gradient:

uADt = gntEL Gt (4.46)

Att

e G}

S

¢t = I(¢",
Finally, we include the effects of the freestream preservation correction from Section 4.4.2:

udPt — gADL u, (4.47)

where u, = G°"Pe,.

4.5.2 Scalar Advection

Once we have the advection velocities u4P-¢

, we can compute the updated scalar fields,
s(t® + Atf). As in the velocity predictor, the scalar predictor will use interpolated coarse-level
boundary conditions for s¢, interpolated in time and space using conservative interpolation. Once
the boundary conditions have been set, the scalar update follows the algorithm outlined in Section

2.6.2. First, we compute edge-centered upwinded values for sntal , and then use these to compute

the fluxes, which we use to perform the scalar update:

st + At = st(th) — AtD (uAP T30 (4.48)
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Anticipating the refluxing correction which will be performed later, we initialize and/or
update flux registers as necessary with the fluxes. If a finer level exists, we initialize the level £ + 1
flux registers with the coarse-level fluxes, and if £ > 0, we update the level £ flux registers with fine
fluxes as detailed in Figure 4.11. The vector ngy is the local normal of the coarse-fine interface for
level £.

We also advance A¢, the freestream preservation indicator, in the same way as the advected

14

scalars s®. The level ¢/¢ + 1 coarse-fine mismatch information for A is stored in the flux registers

SAT! which are analogous to ds‘*1.

4.5.3 Velocity Predictor

As in the single-grid algorithm, we now compute the advective component of the velocity

AD,¢

update. Using the advection velocities u , we now predict the tangential components of the

half,C

edge-velocities u as in Section 2.6.3. As before, we use conservative linear interpolation in time

and space from the coarse-level data to fill a ring of ghost cells around fine-grids for use in the
prediction step. Also, as in Section 2.6.3, we must now include the effects of G¢¢¢ in these predicted
velocities.

The computation of advection velocities in the multilevel algorithm differs from the single

level algorithm in the addition of uf; to correct for coarse-fine errors. In the single-grid algorithm, we

AD,¢ half,e

use the edge-centered u as the edge-centered u normal to the cell edges. In the adaptive

algorithm, we must first remove the effects of u, from u4?-¢:

half.l _  ADJt
vl = Wipl ;= Upitdy (4.49)
Jhalf JADL

i+t i+3.g " PRIt
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1. Predict edge-centered u®!/+¢

2. u**,l S N Atl[A,UEaC(uAD,Z) ,Gluhalﬁl]
3. Update velocity flux registers:

o If { < lppoy, OV = —(uPt. né"'pl)uh“lf”Z on 0N

¢ If£>0, V! =45V!+ (@l ngfhulf) on 00

Ner

Figure 4.12: Velocity predictor portion of level advance algorithm

AD.E and the advected velocity

In essence, we are discriminating between the advecting velocity field u
field ute!/t,

Once the edge-centered velocities have been computed, we compute the advective terms
[(u- V)u]"*t2-f using equations (2.87). Note that uA2>¢ contains the effects of the freestream preser-
vation correction u,. Since we have computed all necessary edge velocities, there are no explicit

¢ can now be

coarse-fine boundary conditions necessary for this step. The intermediate velocity u**
computed, using (2.88).

As in the scalar update, we now anticipate the velocity refluxing in the synchronization step
by initializing and/or updating velocity flux registers. If a finer level exists, we initialize its velocity
flux register with the velocity fluxes across the coarse-fine interface, (u4?>¢ -né#)uh“lf £, If a coarser
level exists, we increment it with the average of the velocity fluxes across the interface. Note that

we will be refluxing both normal and tangential components of velocity, so in two dimensions, the

flux register V has two components. See Figure 4.12.
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4.5.4 Level Projection

Once u***¢ has been computed, all that remains in the level advance is to perform the level
projection, which will approximately enforce the divergence constraint using level operators. Similar

to the single-level projection in Section 2.6.4, we solve:

1 1
Y N A CCL, xx,0
Lin*(t" + 2At ) —Ath u (4.50)
nf(tu%mf) = I(nf(tl+%Atl),n‘f’l(tl+%At‘f)) on 9Q°

where w71 (¢! + L At‘) denotes linear interpolation or extrapolation of 7*~! in time using the old
and new coarse pressures 7 1 (t¢"1 — LA¢¢1) and ot 1 (¢4 + LAt ). Equation (4.50) is solved
using the level solver algorithm described in Section 3.2.6. The velocity on the current level is then

corrected with the gradient of 7¢:
uf(tt + At = ut - AtGOC Rt + %Atf) (4.51)
Cpl 1 £ Ll 1 £ -1 40 1 L 4
w4+ SAH) = It + A, 7 T+ SAE) on 00"
4.5.5 Subcycled Advance of Finer Levels

If a finer level £+ 1 exists, it is now advanced n’, s times with At = #Atl. Implicit in

ref
the subcycled advances of level £+ 1 are the subcycled advances of all levels finer than £+ 1 and any
necessary intermediate synchronizations between level £ + 1 and finer levels. Once this is complete,

all levels finer than level £ will also be at ¢ + At¢.

4.5.6 Synchronization

At this point, we synchronize level £ will all finer levels. As mentioned earlier, we first check

to see if a coarser level has also reached the same time as the current level. If this is the case, we
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Synchronize(£pgse, 59, At5V™)
AverageDown:
for { = U0z — 1, lpase, —1
ul (t59ne) = Avg(utt1(tv")) on P(Q1)
st(tovme) = Avg(s™1(t°v¢))  on P(QF1)
AL(EsYme) = Avg(AFL(£97¢))  on P(QE)
end for
Reflux:
for £ =V 00 — 1, lpase, —1
ul(tsync) - ul(tsync) _ AtlDR(6VZ+1)
st(tovme) .= st (V) — At DR(6s1)
AL(#39me) i= AL(139me) — At!DR(SAHTY)
end for
Synchronization Projection:
Solve L¢°™Pe, = WDCC’Compu(tsy”C) for £ > lhase
u(tYne) = u(tVn°) — AtVneGOCcompe  for £ > fhase
Freestream Preservation Solve:
Solve L¢°™Pe) = %n for £ > lpase
u, = G"Pey

end Synchronize

Figure 4.13: Synchronization for incompressible Euler equations.

do the synchronization operations for all levels which are at the current time #5¥"¢ = ¢t¢ + Atf. If we
denote the coarsest level which has reached t°Y™¢ as {pqs¢, we synchronize all levels £ > lp45.. The
timestep over which the synchronization is being performed is then At5¥7¢ = Atfrese. A pseudocode

description of the synchronization algorithm is in Figure 4.13.
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Averaging Fine Data to Coarser Levels

As in the hyperbolic algorithm in Section 4.1, we first replace the solution on coarse grids
which are covered by refinement with averaged fine-level solutions. This is done from the finer levels
down to coarser levels, so that the solution in all regions is replaced by the appropriately averaged
finest solution possible. This averaging down operation is done for the velocity field u(¢°¥™) the

scalar s(t°¥"°), and the freestream preservation quantity A(¢5¥"¢).
Refluxing

To ensure conservation, we then perform a refluxing operation for velocity and the advected
scalars s and A. This will be similar to the refluxing operations described for the hyperbolic algorithm
in Section 4.1, and is essentially a reflux-divergence of the mismatch of the fluxes, which have been
stored in the appropriate flux registers. Note that both normal and tangential (to the coarse-fine
interface) components of velocity in coarse cells adjacent to coarse-fine interfaces are updated in this

step.
Synchronization Projection

To ensure that the composite velocity field satisfies the divergence constraint based on
composite operators, the composite projection described in Section 4.4.1 is applied to the composite

velocity field for all levels ¢ and finer. We solve:

1

comp comp
L €s Atsync

DCC,compucomp (452)

lhase lhase plbase—1 Chase
ey = I(elese, e ) on 9N
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for the levels £p45. and higher, using the multilevel solver algorithm described in Section 3.2.5. We

then correct the velocities for levels lpose < € < £as:
uf(t597¢) = uf(t7YnC) — AgYne GO eompe, (4.53)
eﬁbase _ I(eﬁbase76£base_l)-
Freestream Preservation Correction

The last synchronization operation is to compute the freestream preservation correction
velocities u,. This is similar to the synchronization correction in that it involves a multilevel solve

for all levels £ > lp45¢. In this case, we solve (4.42):

A-1
LcompeA = WT] (4:54:)
ef\base _ I(eﬁbas:ef\basefl)_

Then, the gradient of the correction u, can be computed and stored for future use:

u, = G"Pey  for £ > lpase (4.55)

ef\base — I(ef;ba.se7ef;ba.se71)‘

This completes the synchronization operations, which in turn completes the level fpq5,

timestep.

4.6 Initialization

Before the initial timestep for a level ¢, initial values for 7! and ef~! will need to be
computed for use as boundary conditions. Also, the initial velocity field must be projected to ensure

that it satisfies the composite divergence constraint. Moreover, if a new grid configuration for level
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¢ is defined as a result of regridding operations during the computation, initial values for 7¢, e, and
u,, will need to be computed for the new grids. Note that after regridding, e; and u, will need to
be recomputed on the finest unchanged level as well.

As mentioned previously, at the beginning of the computation the initial velocity field must
be projected to ensure that it satisfies the composite divergence constraint. This is a straightforward
application of the Hodge-Helmholtz decomposition (2.41), extracting the divergence-free component

of the velocity field. We solve:

comp comp __ nCC,comp, comp
L Cinit = D W;nit (4.56)

over the entire grid hierarchy, using the multilevel algorithm presented in Sections 3.2.3 and 3.2.4.
Physical boundary conditions are imposed appropriately on the velocity and the correction field e;p;:
as in the single-grid projection, described in Section 2.5.1. Then, the velocity field is corrected onto

the space of vectors which satisfies the divergence constraint:

comp _ .comp  ~CC,comp_, comp
u =W, —G Cinit - (4.57)

As before, appropriate physical boundary conditions are applied, based on the single-level projection
boundary conditions.

For initialization purposes, we will define .5, as the finest unchanged level in the grid
hierarchy. For initialization before the initial timestep, £p,se Will be -1. The basic strategy will be
to compute a single non-subcycled timestep on all grids £ > fp,se, in the process computing all the
required quantities. Because the usual edge-centered projection in the advection step uses e, as a
boundary condition, we compute two iterations of the initialization timestep — one in which ey is

not used as a coarse boundary condition for ¢, and then a second one where the e; computed in the
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first iteration is used for the coarse boundary condition for ¢. Since the initialization process is not
subcycled, the timestep At will be dependent on the stability requirements of the finest level. In

practice, we use half of the timestep we would normally use on the finest level:

At = =Agbmes (4.58)

where o is the CFL number, defined in (4.5)

The algorithm used to initialize 7 and e is shown in Figure 4.14. If the initialization
is being performed after a regridding operation, instead of at the initial step, then there are also
advection errors from previous timesteps which much be corrected as well. The advection correction
u,, is based on the current A field, rather than on one computed in an initialization timestep, because
the goal of the freestream preservation correction is to correct for errors which have already occurred,

while the goal of the initialization timestep is to predict reasonable values for 7 and e;.
Initializing 7

To initialize 7, we do a non-subcycled level advance on each level greater than £,s.. Since
the coarse-fine boundary conditions for the edge-centered projection require e’é’l, which has not
yet been computed, we do two passes of the initialization algorithm. During the first pass, e is
not available, so we use the coarse-level ¢ as the boundary condition for all levels greater than
lpese- During the second pass, we can use the estimate for e5; and 7 computed during the previous
timesteps:

L'¢t = Dighaltt
o = {I(¢l,¢“) ifn=1

I(¢4, &t (rt~ + €f71))  otherwise
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EulerInit (£pqse, ")
Compute At
for n = 1,npgsses
if (gbase > _]-)
Compute 1**%esc as usual
Project u**fease;
Solve Ltvasegloase = L DCC0pase 3** Loase
Ubvase -— q**:loase — §G007lbase%lbase
end if
for £ = lyase + 1, binaz
Predict u"®#¢ as in Sect. 4.5.3

Perform edge-centered projection of advection velocities: Lf¢p¢ = Dtahatf:t

Correct advection velocities: u4P¢ := APt — Gyt

Predict u*/+¢ as in Sect 4.5.3: u**¢ = u — At!{[AvF~C (@A) . valalle]

Update velocity flux registers:
i (0 < lpay) OV = —(@ADL . nep)ahaldt
if (0>0) 6VE =V (@ADL - nep)ahel o)
Project & — u‘(t + At') :
Solve Lfrt = é DOC g%t
al(tt + Atl) = aot — AtGO it
end for
for £ = lmar =1, lhase, — 1
Reflux: ¢ := @f — AtDR(SVEH!)

end for

Compute initial e;: Solve L¢°"Pe, = iDCC’C"mPﬁ for £ > lpase

Compute initial u,:
Solve L¢™Pe) = A(It\z;ls)e n  for £ > lhase
u, = G9"ey

end for

end EulerInit

Figure 4.14: Initialization algorithm for the incompressible Euler equations

154



CHAPTER 4. ADAPTIVE PROJECTION ALGORITHM 155

Once u**f has been computed, we project to get the initial estimate of the level pressure
7f. Note that because the initialization timestep is uniformly At for all levels, 7 will have a time
centering at " + %Kt for all levels. At coarse-fine interfaces with coarser levels, the boundary

condition for 7 will reflect this centering:
£ pinit 1= £ pinit 1= =1 (yinit 1= 4
(7 + §At) = I(7" ("™ + §At),7r (" + §At) on 90°. (4.59)
Initializing e,

To compute an initial e;, we first require a set of level-projected velocities for all levels
> lpase- We expect that eg will change on the coarsest unchanged level because it will reflect
the coarse-fine interface corrections for the new finer levels. For this, we will need to compute a
level-projected velocity i#== (¢t + At). For this reason, if £puse # —1, we perform an initialization
timestep for .5 as well.

Once level-projected velocities u (¢ + %ANt) have been computed for all levels £ > lpqse,
we can then compute the initial estimate for the composite pressure correction ey by performing an

initial synchronization projection. We solve:

1 ~
— DCComPH for £ > lhase (4.60)

At

e'l;base _ I(e{;base7eﬁbase*1)7

Lcompes

using the same multilevel projection used in the usual synchronization projection.

Initializing Freestream Preservation Correction

Finally, when initializing a new hierarchy of grids after a regridding operation, we will need

to compute a new correction field for freestream preservation errors. Unlike the initializations for
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7 and es, we use the existing solution for A at "%, since the goal in this case is to correct for
the errors which have already occurred. So, the synchronization timestep in this case will be the
timestep of the fp,se. As in a normal synchronization procedure, we first solve for ey :

A-1
LcompeA = m’f} for ¢ Z gbase (461)

ef;ba.se _ I(ef\zmse,ef\baseﬂ).

Then, we define the correction velocity field which will be added to the advection velocities:

u, = GMPep for £ > lhase (4.62)

ef\base I(ef\base,eﬁbasefl)'

4.6.1 Comparison to Previous Work

Various approaches have been used to compute adaptive solutions to incompressible flows.
To compute steady-state solutions to the incompressible Navier-Stokes equations, Thompson and
Ferziger [65] used an adaptive multigrid method based on the adaptive multigrid algorithm originally
developed by Brandt [24].

For time-dependent incompressible flows, Howell and Bell [41] constructed an adaptive
projection method based on the exact projection and the projection formulation of Bell, Colella, and
Glaz[16], in which there was no refinement in time. It was noted that the decoupled stencil of the
exact projection caused considerable complications at coarse-fine interfaces because the decoupling
of the computational grids had to be respected across coarse-fine interfaces.

Minion [48] constructed a non-subcycled adaptive version of the approximate cell-centered
projection of Lai [44] and the projection formulation of [17], which included a multilevel edge-centered

projection for advection velocities.
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In atmospheric modeling, the anelastic equations for atmospheric motions are similar in
structure to those for incompressible flow, with a divergence constraint on velocity which includes
the effect of atmospheric stratification. Clark and Farley [30] and Stevens [59, 60] have constructed
adaptive methods for anelastic atmospheric dynamics based on the projection method which were
fully adaptive in both time and space. Neither of these methods, however, enforced the divergence
constraint in a composite sense across all levels of refinement, instead enforcing it on a level-by-
level basis, with boundary conditions interpolated from coarser grids. The lack of coupling of the
coarse-level pressures to the fine levels has been shown [60, 5] to cause a loss of accuracy in the final
solution.

Almgren et al. [5] have developed an adaptive projection method which refines in time
as well as space and which enforces the divergence constraint in a composite sense across all levels.
Their projection operator is based on the nodal scheme of Almgren, Bell, and Szymczak [4], and uses
the basic projection formulation of [16] as extended by Bell, Colella, and Howell [17]. In contrast with
du

Y rather than the entire intermediate

this work, the algorithm of [5] projects the approximation to 7,

velocity field u**.

In [5], the timestep is structured in a similar way to this work, as a series of recursive
updates starting with the coarsest level and then using suitably interpolated coarse level values to
construct boundary conditions for the fine-grid updates. Because of temporal refinement, each fine
level solution is updated multiple times for each coarse level update. Any time the solutions on two
levels of refinement reach the same location in time, they are synchronized.

In [5], elliptic matching of the pressure field is also enforced by means of a synchroniza-

tion projection which ensures that the composite velocity field satisfies the constraint based on a
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composite operator. Because %—‘; is being projected, the construction of the synchronization projec-

du
at

tion is somewhat different; the mismatch in is stored and then used, along with the change to
the coarse-grid velocity field caused by velocity refluxing, to explicitly compute the source for the
synchronization, which appears as a source term on the coarse level. Recall that in the algorithm
presented in this work, the composite velocity field is simply re-projected using composite operators
to ensure that elliptic matching is enforced. Moreover, in [5], levels are synchronized in coarse-fine
pairs, starting at the finest level and continuing with successively coarser level £/¢ — 1 pairs until all
levels at t°¥™¢ have been synchronized.

Freestream preservation, the property that constant fields of advected quantities in incom-
pressible flow remain constant, is enforced in [5] by a second “MAC synchronization” step, which
ensures that the advection velocities also satisfy a divergence constraint based on composite opera-
tors. A second advection step is then performed on the coarse level using the correction velocities,
and advective corrections are then interpolated to finer levels.

A third difference between the algorithm of [5] and the one presented in this work is in
the initialization after re-regridding. Since the pressure in [5] is stored as a composite pressure,
rather than separate level-based and correction fields, the existing pressure field is interpolated to
provide an existing pressure for newly refined regions. Since we maintain separate level pressure

7* and correction e fields, we must compute a new correction field e (as well as a new freestream-

preservation correction up) after regridding to account for the new grid configurations.
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4.7 Filters

As mentioned in Section 2.7, many researchers have found velocity filtering to be necessary
to prevent spurious velocity modes from contaminating the solutions. Some attempt was made to
extend the filters used in single-grid projection algorithms to this implementation, but they were
unsuccessful. Two strategies were employed. First, an attempt was made to design a filter with
composite operators. When this proved unsuccessful, the filters described in [53] were employed on
the interiors of grids. Because the goal of filtering is to remove oscillatory modes that the interior
discretization of the approximate projection leaves behind, it was felt that simply applying filters
on the interiors of grids would be sufficient to reduce these modes, without upsetting the matching
conditions at the coarse-fine interfaces.

In practice, however, employing filters in this way caused noticeable vorticity generation at
coarse-fine interfaces. In light of this, it was decided to not use filtering at the present time. Other
projection method implementations have also not found filtering to be necessary, including that of
[27], for example. Almgren et al. only use filtering when necessary to prevent obvious degradation
of the solution in the form of “checkerboarding” of velocity. [6] For the test problems computed in
this work, we have not found serious degradation of the solutions, so implementation of filtering for

this algorithm has been deferred.
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Chapter 5

Error Estimation

As can be imagined, the effectiveness of adaptive methods depends strongly on appropriate
placement of refinement. Almgren et al. [5] showed that refined patches placed without care did
not, in general, reap the benefits of increased resolution. We would like our error estimation criteria
to be able to predict where refinement should be placed to improve the accuracy of the solution.

There have been many different approaches to deciding where to place refined patches,
ranging from fairly involved mathematical estimates of the error (for example, [19, 67], to fairly
simple usage of flow quantities of interest, such as vorticity, density gradients, or energy (for example,
[5]). In this work, we have used variations on several of these methods.

In this chapter, we will develop the methods used to estimate where regridding is needed;

at present, we use four ways to decide where to place refined patches:
e user-defined grids.
e user-defined criteria

e Richardson extrapolation
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The first is not truly an adaptive refinement technique, since the grids are pre-defined. The
remaining techniques are automatic, in that they require little or no user input (other than some
sort, of tolerance for the criteria) and are adaptive, in that they are able to respond to features in
the solution as they develop.

For the adaptive grid generation techniques, we follow a two-step process. First, we look
at the existing hierarchy, apply our criteria to the current solution to “tag” cells in the existing
grid hierarchy for (further) refinement (or un-refinement: if a currently refined cell no longer needs
refinement, it is not tagged, and so is no longer included in the list of cells to be refined). Then, we

use a clustering algorithm to group these tagged cells into new grids.

5.1 User-Defined Grids

The first, and most straightforward, method of determining grid placement is to use pre-
defined grids. This is most useful when the user has a good idea already where refinement will
be most beneficial or where there is an already known feature or region of interest in the solution.
However, because the grid structures are defined without direct interaction with the solution, this
is not really an “adaptive” method per se. As such, it is generally not as useful as fully automated

grid generation.

5.2 User-Defined Criteria

There are many cases where the user will have an idea of which features are of interest
or are indicative of a need for refinement. To support this, cells can be tagged based on any user-

defined solution-based criteria. For example, one may want to tag on areas of high vorticity or high
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heat release as indicators of interesting features in the solution. It is common to use derivatives of
solution quantities like velocity or density as indicators of areas of high activity which could benefit
from refinement. In many cases, this is sufficient to improve the quality of the solution, especially
if the quantity of interest also has a strong solution-based indicator of the necessity for increased
resolution.

While this is a fully automatic and adaptive grid generation technique, it does not neces-
sarily ensure increased accuracy of the solution. Because it is not really an estimation of error, there
is no guarantee that refinements based on solution features will improve the solution quality. There
is always the chance that important features of the solution will be missed. On the other hand,
refinement may be based on spurious features of the solution. Baker [11] raises the possibility that
errors due to the grid interfaces can then further excite these spurious features, resulting in further
solution degradation. Also, Sweby and Yee [64] demonstrated that refinement based on solution
featured can cause chaotic behavior in the case of moving-grid refinement.

In fact, even refinement based on solution error will not necessarily improve solution quality.
In many cases, solution errors are nonlocal in nature, resulting from accumulation of discretization
errors elsewhere in the domain [11]. Minion [49] also shows that prevention of spurious vortices in
incompressible flow can require refinement in locations other than the neighborhood of the spuri-
ous feature itself. For this reason, we believe that error estimates based on localized measures of

discretization error are a better indicator of where refinement should be placed for greatest benefit.
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5.3 Richardson Extrapolation

The use of Richardson Extrapolation to estimate the truncation error of a numerical solu-
tion has a long and rich history. Berger and Oliger [19], Berger and Colella [18], and Propp [51] have
used it for time-dependent problems, while Berger and Jameson [21], Dudek [34], and Bettencourt
[22] have used it for steady-state problems. Variants of this procedure are also used in [21] and [45].
The implementation of Richardson extrapolation in this work is based on that described in Martin
and Cartwright [47] and extended by Propp [51].

The basic idea is to apply the operator L to the existing solution, coarsen the result, and
then compare it to the operator applied to a coarsened version of the solution. It can be shown that
the difference between the two is proportional to the local truncation error. In terms of the existing

operators from Chapter 3:
Errort = Average(L'U*) — L*~! Average(U") (5.1)

For steady-state problems, we are generally solving an equation of the form L(U) = f. For Poisson’s
problem, L is the Laplacian operator. For time-dependent problems, the equation we are solving is
% = L(U), so L is the right-hand-side of the discrete time evolution equation.

As mentioned before, we expect that our scheme will lose accuracy at coarse-fine interfaces
and that the local truncation error will be O(h) (one order less accurate than the rest of the scheme)
due to the coarse-fine interpolation error. For the same reasons, the scheme will also lose accuracy at
physical boundaries, since we are using a lower order approximation there as well. So, if we naively
use the error computed using (5.1) there, we will see a large error, which will appear in a single layer

of cells on both the coarse and fine sides of the interfaces. Both in theory and in practice, however,

this error on the coarse-fine interfaces and physical boundaries does not affect the global accuracy
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Figure 5.1: Replacing error in fine-grid boundary cells (shaded) with adjacent values

of the scheme, since it is on a set of one dimension less than the problem space. (This assumes,

1
h?’

of course, that the surface/volume ratio is of order +, which will not be true for very small grids,
where the surface/volume ratio approaches one.)

So, we do not want to use the error computed by (5.1) on these cells; if we did, refined
grids would simply expand until they reached the physical boundaries. We do not, however, want to
simply ignore the possibility that we may want to refine these boundary cells. So, for each boundary
cell, we copy the error computed on an adjacent cell which is untainted by the coarse-fine boundary
error. For the elliptic equations in [47], areas of high error tend to be in patches, rather than single
cells; for the Euler equations, we have noticed similar behavior. Since we are dealing with patches
of high error, copying from adjacent cells is an adequate solution. On the fine side of the coarse-fine
interface, adjacent cell values are copied as shown in Figure 5.1. In [47], cells on the coarse side
of the coarse-fine interface were replaced with averages of the adjacent fine-grid values (which had

themselves been replaced as necessary). In the case of the Euler equations, the differences in time-

centering between solutions on each level preclude this; instead, we simply copy the adjacent coarse
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values.

5.3.1 Richardson Extrapolation for the Poisson Problem

For the Poisson problem, the error equation (2.14) indicates that reducing the truncation
error should certainly result in a reduction of the solution error. For this reason, we expect that
truncation error is an excellent indicator of where refinement is necessary to improve solution quality.
Moreover, using local truncation error as an indicator will localize the sources of error. Due to the
elliptic nature of Poisson’s equation, local discretization errors will induce solution errors which are
nonlocal in nature; using an estimate of local truncation error to decide where to place refinements
will make it possible to localize the sources of the global solution errors.

Since we want to estimate the error on all existing levels, including those partially overlain
by refined grids, we need to modify this procedure slightly. Where a grid is covered by a refined
patch, we use the error computed on the refined level. Since we know that the error is proportional
to h%, we can rescale the fine error by (Z—f)2 (the square of the refinement ratio), and average it onto
the coarser grid. This gives a reasonable approximation of what the error in a refined region would
be if there were no refinement.

Also, since for Poisson’s problem there is no time centering of the different solution levels,
we can use the approach in [47] to replace the error computed in coarse cells adjacent to coarse-fine
interfaces. In this case, we replace the tainted coarse-cell values with the averaged adjacent fine-grid

values, as shown in Figure 5.2.
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Figure 5.2: Replacing error on the coarse side of the coarse-fine interface with averaged fine-grid values

(shaded).

5.3.2 Richardson Extrapolation for the Time-Dependent Problem

For time-dependent problems, the operator L is the discrete time evolution of the solution.
We would like the error estimate we construct to have a consistent time centering, so we will take
pseudo time steps as depicted in Figure 5.3. The basic strategy will be to do a fine timestep of
Atfme centered around the current time ¢, and then take a coarse time step of At¢"s¢ = 2A¢fine
on the coarsened level, also centered around time t". We will then compare the fine and coarse
approximations of % to get an estimate of the truncation error. Note that we preserve the time
centering of the timestep and also maintain a consistent CFL number for each pseudo-timestep.
Note also that this method requires an old solution at t* — Atf, which we use to compute the initial
state for both the coarse and fine approximations; the initial fine state is computed by averaging
the t" and t"~! solutions in time, while the initial coarse state is computed by spatial averaging of
the ¢! solution. At the initial timestep, this earlier time does not exist, and so we do not use this

method, but instead use a user-defined method to construct the initial grid hierarchy.
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Figure 5.3: Richardson Extrapolation time steps
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For the Euler equations, we will also only use the advective part of the complete timestep,

Ad &~ (u- V)u to compute estimations of the error. This will measure the error in the advection

process. It has the advantage of having no nonlocal contributions from the elliptic projection oper-

ator, so it is a good localized error measure. Also, since the advection step will provide the source

term for the projection, we expect that the errors in advection will be nonlocalized by the projection

operator.

We construct fine and coarse approximations as follows:

e Fine approximation

1. Construct u?—3:fine —

2. Atfine — (tn _ tn—l)

(un + unfl)
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. half,fine __ fine,t=n _ fine,t=n . .
3. Predict ug, = (ui+%7j Vi ) as in Section 4.5.3

4. MAC Projection: Lo/ = ¥ - ul/F"¢ a5 in Section 4.5.1

5. Correct predicted velocities: uﬁ"e = ugalf — G¢fe as in Section 4.5.1

6. Store G¢/"¢ for future use on coarsened level.

half,fine

7. Re-predict velocities: trace u as in Section 4.5.3

8. Adline — _D(uggw .uhalf,fine)

fine __ _ __fine __half,fine
9. F,, =-u, -u

e Coarse Approximation

1. Construct u?—1erse = Aygfine=erse(yn—1,0) and

Goproe = Avgfine=erseGpfine from fine approximation
2. AgeTse — 2Atfine

. half,crse __ crse,t=n _crse,t=n .
3. Predict ug, = (ui+%7j VL ) as in fine step

4. Correct predicted velocities: ucTs¢ = ut®/crse _ qperse
p d G

a

5. Re-predict velocities: trace uhe!f-crse

6. Adcrse = _D(ugzlse . uhalf,crse)

crse — _ jcrse , jchalf,crse
7. FlP¢ = —ul’¢ - u

Note that we save an elliptic solve by averaging the MAC projection gradients from the fine approx-
imation for use during the coarse approximation.

We then compute the approximation to the error:

EAD — A,Ufz'ne—mrse (Adfine) — Aderse (52)
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The error we compute in (5.2) has units of [[TL]]Z We would like to nondimensionalize this so that

we can compare it against a nondimensional tolerance. Following the example of the nondimen-

sionalization of the Euler equations in fluid dynamics (see, for example, Schlichting [56]), we use

E* = [[UL]f, where [U] is a characteristic velocity (in our case Max(u) ), and [L] is a characteristic
length, which will usually be the length of the problem domain. Then, we can tag on all cells in

which the scaled error is greater than a tolerance 7:

Eap
E*

> T (5.3)

Note EY , is actually defined on a grid which is a factor of 2 coarser than Q¢. This means that when
we tag on a cell because it satisfies the criteria in (5.3), we are actually tagging the four (in two

dimensions) level ¢ cells which overlie the coarsened grid on which EY, is defined.

5.4 Grid Generation

Once we have tagged cells for refinement using one or more of the methods described
above, we then must generate suitable block-structured refined grids. This generation process has
two conflicting goals. First, we would like to generate efficient grids, in which unnecessary refinement

is kept to minimum. This is quantified by defining a grid efficiency,

number of tagged cells

U] (5.4)

- total number of cells refined

and demanding that the grids we generate exceed a prescribed efficiency. We have found an efficiency
of around 70-80% to be useful. On the other hand, we would like to generate “block-like” grids
which minimize the surface/volume ratio because coarse-fine interfaces carry with them a cost both

in computational work needed to enforce synchronization between levels, and because of the error



CHAPTER 5. ERROR ESTIMATION 170

1. Tag cells using error estimators: Tfj = TRUE if tagged for refinement
2. Coarsen list of tagged cells: T¢"*¢ = coarsen(T*, Fi)

3. Call clustering algorithm Q¢"%¢ = Cluster(T°rse, Ngrids)

new

4. Refine grids to new level Q5tL = Re fine(Q73¢, Fp x nfef)

new new?

Figure 5.4: Basic grid generation algorithm

induced by reduced accuracy at the coarse-fine interface. As was seen in Section 3.4.2, if grids
with a high surface/volume ratio are produced, the increased accuracy of the refined patch can
be outweighed by the errors induced at the coarse-fine interfaces. Also, because we will be using
multigrid acceleration for our elliptic solvers, we would like to have grid configurations which are
as coarsenable as possible (see Section 3.2.5), in order to reap the benefits of multigrid. We enforce
a certain degree of “blockiness” in the grids by use of a “blocking factor” Fp, which will be the
minimum amount a set of grids can be coarsened. The blocking factor is enforced by coarsening the
arrays of cells which are tagged for refinement by Fp before calling the clustering algorithm, which
then will produce coarse grids, which are then refined up to the resolution required, as described in
Figure 5.4. When coarsening the list of tagged cells, if any fine cell which falls inside a coarsened

cell has been tagged for refinement, then the entire coarsened cell is tagged.

5.4.1 Clustering Algorithm

To generate grid configurations from the list of tagged cells, we use the clustering algorithm
of Berger and Rigoutsos [20]. In this method, grid generation is an iterative and recursive process.
The smallest box possible is placed around the tagged cells. If the grid generated by this box does

not satisfy the grid efficiency requirement, then the algorithm looks for a good “cut point” to split
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the box in two. Cut points are found using an edge detection algorithm that creates a histogram
of the number of tagged cells in both the X and Y directions, and then prioritizes cut points by
first looking for gaps in tagged cells (where the histogram goes to 0, a natural cut point), and then
by looking for places where the second derivative of the histogram changes sign, which is a good
indicator of a natural “edge” in the tagged cells. If all else fails, simple bisection of the box is used.
Then, cut the initial box along the cut point line, and draw the smallest possible boxes around
each of the two subgroups of tagged cells. If either of these boxes does not meet the grid efficiency
criterion, then we look for another cut point in the offending box(es). This is continued until we

have a set of boxes which all satisfy the grid efficiency criterion.
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Chapter 6

Results

This chapter will describe the results of the various test problems we have used to validate
the algorithm. The test problems are chosen to demonstrate the convergence properties and robust-
ness of the AMR algorithm. There are various questions which must be answered to demonstrate

the effectiveness of the method described in this work. Questions we would like to answer are:
1. Are flow features corrupted when they cross the coarse-fine interface?
2. What is the effect of the volume-discrepancy correction?

3. Do we reach the accuracy of a globally refined calculation through the use of local refinements?

6.1 Test Problem Descriptions

To answer the questions posed in the previous section, we will use three test problems,

which are :
1. Steady-state vortex in a box

2. Traveling counter-rotating vortex pair
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Figure 6.1: Initial vorticity distribution for single vortex problem.

3. Three co-rotating vortices

6.1.1 Single Vortex in a Box

The first test problem is a single steady-state vortex in a box. Initial conditions are given
by:

~ F(% — 47%) iftr<R 6.1
ug(r) = I(E(LR-4R%) ifr>R o

where 7 is the radial distance from the vortex center, ug is the azimuthal velocity component around
the vortex center, R is the radius of the vortex patch, and I is the vortex strength. For the single
vortex in a box problem, the vortex center is placed at (z,y) = (3,3), R = 1.0, and I' = 0.2. The

initial vorticity distribution for this case is shown in Figure 6.1.

6.1.2 Traveling Vortex Pair

The initial condition is a pair of counter-rotating vortices, each with an initially cubic

vorticity profile. The cubic vorticity profile was chosen such that both the vorticity w and its
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Figure 6.2: Initial vorticity distribution for traveling vortex problem.

derivative ‘;—“; are equal to zero at the radius R from the vortex center, and the circulation of the

vortex is equal to 27", The initial velocity for each vortex in this case is given by:

_8 4 _ 5 34 10 i
uo(r) = F(13R5r il +3R2r) ?fr<R . (6.2)
(=) ifr>R

Using superposition, the velocity field induced by each vortex is added together to create the total
velocity field. For the test problem in this section, there were two counter-rotating vortices. The
first vortex had a strength I' = 0.35, a radius R = 0.15, and was centered at (z,y) = (.3,.65). The
second vortex had a strength of I' = —0.35, » = 0.15, and was centered at (z,y) = (.3,.35). The

initial vorticity distribution is shown in Figure 6.2. Due to the velocity field induced by each vortex,

the net effect is that the vortex pair translates to the right.

6.1.3 Three Co-Rotating Vortices

For this test problem, the initial condition is given by three vortices with the cubic vorticity

profiles described in Section 6.1.2. In this case, there are three co-rotating vortices. Each vortex had
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Figure 6.3: Initial vorticity distribution for 3-vortex test case

a strength of I' = 0.50 and a radius of R = 0.75, and were centered at (0.68,0.5), (0.455, 0.65588457),
and (0.455, 0.34411543). The initial vorticity distribution for this case is shown in Figure 6.3. The
vortices induce a velocity field which causes the three vortices to revolve around the center of the

domain.

6.2 Passage Through Coarse-Fine Interfaces

To demonstrate that flow features can pass across coarse-fine interfaces without distortion
by the grid discontinuity, we ran the two-vortex test case with a 32x32 base grid and one factor two
refinement, but holding the grid configuration constant at the original configuration. In this case,
the traveling vortices will translate to the right, crossing the coarse-fine interface and passing onto
the coarse grid. This will demonstrate that flow features are not distorted as they cross the coarse-
fine interface. Contour plots of the vorticity distribution are shown in Figure 6.4. For comparison

purposes, the solution after 150 timesteps of a 32x32 single-grid case is shown in Figure 6.5 As can
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be seen, there is no noticeable corruption of the vortices as they cross the interface, except for some
spreading of the vortices, as is expected due to the coarser resolution. Also, comparing the solutions
after 150 coarse timesteps, it is evident that the two solutions do not noticeably differ, so we recover

the coarse single-grid solution after passing from the fine patch, which is what we expect.

6.3 Volume-Discrepancy Correction

We would also like to examine the effect of the volume-discrepancy correction described
in Section 4.4.2. We will use two test problems. First, we will look at the effects of the volume-
discrepancy correction for the steady-state single-vortex problem described in Section 6.1.1. Then,
we will examine its effects in a time-dependent case (including the effects of regridding) by looking

at the traveling vortex pair problem of Section 6.1.2.

6.3.1 Single Vortex

To isolate the effects of the volume-discrepancy correction without the complications of
regridding, we ran the single-vortex test case with and without the volume-discrepancy correction,
which corresponded to n = 0.9 and n = 0 respectively. A comparison of the distribution of A is
presented in Figure 6.6. Note that all of the plots in Figure 6.6 have the same scale, which makes
the effect of the volume-discrepancy correction evident. Recall that A # 1 is a measure of the
errors in advection caused by the failure of freestream preservation. It is apparent from Figure 6.6
that without the volume-discrepancy correction, errors in advection are generated at the coarse-fine
interface, which are then advected throughout the flow (which in this case is a counter-clockwise
rotating vortex), corrupting the solution even away from coarse-fine interfaces. In contrast, with

n = 0.9, the advection errors are confined to the cells immediately adjacent to the coarse-fine
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Figure 6.4: Vorticity distribution for traveling vortex problem after (a) 50 timesteps, (b) 75 timesteps,
(c) 100 timesteps, and (d) 150 timesteps.
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Figure 6.5: 32x32 single-grid case after 150 timesteps

interface, and appear to be kept to the magnitude of the error made in one timestep. Since the
volume-discrepancy correction is a lagged one, and as such can only relax errors after they have
been made, this is what we would expect.

To further examine the advection errors for the single-vortex case, we ran a series of cases
with 32x32, 64x64, and 128 x128 base grids, each with one level of refinement. To judge the effects
of refinement ratio on the advection errors, each case was run with both n,.;y = 2 and n,.y = 4.
Max(A-1), which is the error in A, is plotted against time for these cases in Figure 6.7. It is apparent
from inspecting Figure 6.7 that, to first approximation, the advection errors are a function of the
coarse grid spacing; the effect of the refinement ratio is only secondary. This is especially apparent
in the no-correction case. Further inspection of Figure 6.7(a) reveals that without the volume-
discrepancy correction, the errors converge at roughly O(h.), where h. is the coarse-grid spacing.
(The actual order of convergence for this case appears to be between 1.1 and 1.3.) The dips in
max(A) at t = 12 and ¢ = 25 arise because the fluid containing the maximum A is advected into a

source of a deficiency in A (A < 1), which causes some cancellation of the extrema of the error.
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Figure 6.6: A after (a) 1 timestep, (b) 10 timesteps, and (c) 20 timesteps. Pictures on left are with

volume-discrepancy correction, pictures on right are without.
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Max(Lambda) vs. Time-- No Correction Max(Lambda) vs. Time
Max(Lambda) Max(Lambda)
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(a) (b)

Figure 6.7: Max(A) vs. time for the single-vortex case; (a) without volume-discrepancy correction, and

(b) with correction. Note that (a) and (b) have different scales.
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Comparison of the scales of Figures 6.7(a) and 6.7(b) shows that using the volume-discrepancy
correction drastically reduces the maximum error, as was seen in Figure 6.6. As before, it appears
that using the correction restricts the error to something less than the error made in one timestep.
Since we expect this error to be O(h.)At¢, where At¢ is the coarse-grid timestep (which is itself
O(h.)), we would expect that this would restore second-order accuracy to this aspect of the method.
(The actual convergence rate appears to be around 1.6 between the 32x32 and 64x64 cases, and

1.85 between the 64x64 and 128x 128 cases.)

6.3.2 Traveling Vortex Case

Because freestream preservation errors are generated at coarse-fine interfaces, we expect
that changing the grid structure as the solution evolves will complicate the issue somewhat. To
examine the performance of the volume-discrepancy correction in a fully time-dependent case (in-
cluding regridding), we repeat the cases in the previous section, but with the initial conditions for
the traveling vortex pair of Section 6.1.2. In this case, however, we allow the grids to change dy-
namically with the solution. For this set of test cases, we will regrid every two coarse-grid timesteps,
using the Richardson extrapolation error estimator of Section 5.3.2. For the 32x32 base grid case,
we will use an error tolerance of 7 = 0.8. Because we expect the truncation error to scale as h?, we
divide this tolerance by (Z_;)Q = 4 each time we refine the base grid, so the error estimation tolerance
for the 64 x64 case will be 7 = 0.2, and for the 128 x 128 case, we will use 7 = 0.05. The distribution
of the A field after 2, 24, 60, and 100 timesteps is shown in Figure 6.8, where no correction was
applied, and Figure 6.9, where the correction was applied. Note that the color scales are different
for the two figures.

From examining Figure 6.8, it is apparent that as the grids move with the vortices, each
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Figure 6.8: A (without volume-discrepancy correction) after (a) 2, (b) 24, (c) 60, and (d) 100 timesteps.
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Figure 6.9: A (with volume-discrepancy correction) after (a) 2, (b) 24, (c) 60, and (d) 100 timesteps.
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Max(Lambda) vs. Time -- No Correction Max(Lambda) vs. Time
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Figure 6.10: Max(A) vs. time for the traveling vortex pair case; (a) without volume-discrepancy correc-

tion, and (b) with correction. Once again, note that (a) and (b) have different scales.

new coarse-fine interface results in the creation of a new set of errors, which is left behind once the
coarse-fine interface has moved. These errors are then advected throughout the flow, as in the single-
vortex case. Even with the moving grids, Figure 6.9 shows that the volume-discrepancy correction
still confines advection errors to the cells immediately adjacent to the coarse-fine interfaces, and once
again, limits them to approximately the error generated in one timestep. While this one-cell-wide
error is left behind when the coarse-fine interface moves, it is quickly removed by the action of the
volume-discrepancy corrections.

Plots of Max(A) vs. time are shown in Figure 6.10. Once again, note the radical reduction

in the advection error when the volume-discrepancy correction is employed. Note that due to
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regridding, the max(A) plot for the corrected case is much more oscillatory. This is expected because
as the grids move, the correction field must adjust to the new grid configuration. In other respects,
the results of the time-dependent case behave in the same way as for the steady-state calculation.
This points to this technique as a robust method for correcting errors due to the mismatch in

advection velocities.

6.4 Accuracy of AMR Calculations

An important question for adaptive methods in general is whether local refinement can
result in improved accuracy. In Section 3.2.1 it was demonstrated for Poisson’s equation that simply
refining the computational mesh without sufficiently linking coarse and fine solutions did not improve
the global accuracy of the solution. Likewise, for our algorithm, we would hope that local refinement
increases the accuracy of the solution. While we expect some errors due to the reduced accuracy at
coarse-fine interfaces, we hope that these errors are outweighed by the gain in accuracy from local
refinement. Ideally, local refinement will result in accuracy comparable to that attained in a global
fine-grid computation.

To test this, we use the three-vortex problem. Since there is no exact solution for this
problem, a 512x512 single-grid computation was performed, which was treated as the “exact” so-
lution for the purposes of this comparison. The errors were computed by averaging the 512x512
solution onto the valid regions of the composite solution, subtracting the composite solution, and
then using this composite error to compute the appropriate error norms. In these runs, the global
(coarsest-level) timestep was prescribed for each run, so that the solution times would correspond.

Five cases were run, each with one level of refinement. Three cases were run with n,.; = 2, with
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[ Base Grid Size | h= 1/32 [ 1/64 [ 1/128 [ 1/256 |
2Ref 0.8 02 [ 005 [
ARef 02 005 — | —

Table 6.1: Richardson extrapolation error estimator tolerances used for three-vortex problem

Figure 6.11: Vorticity and grid configuration for three-vortex case, 64x64 base grid, one n..; = 2

refinement.

32x32, 64x64, and 128x128 base grids. Also, two cases were run with n,.r = 4, with 32x32 and
64x64 base grids. To estimate error for grid placement, the Richardson extrapolation error estimator
of Section 5.3 was used. Since it was assumed that our method is O(h?), the tolerance for the error
estimator was adjusted to reflect the expected spatial resolution; for example, if the tolerance for a
case with spatial resolution Az = Ay = h was ¢, then the tolerance for a case where Az = Ay = %
would be 7. The error estimation tolerances for each case is shown in Table 6.1

The errors are tabulated in Tables 6.2 and 6.3 for the errors in the x— and y—velocities,

respectively at ¢ = 0.128. The vorticity distribution and grid configurations for the 64 x64 base grid,

Nrep = 2 case are shown in Figure 6.11.
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(¢) Loo(error)

Table 6.2: Errors for x-velocity, time = 0.128

| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 0.185132 | 0.0464363 | 0.0121967 | 0.00282103
2Ref 0.0527198 | 0.0156918 | 0.00477001 —
4Ref 0.0200913 | 0.00717611 — —
(a) Li(error)
| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 0.490627 | 0.172484 | 0.0418936 | 0.00847492
2Ref 0.171974 | 0.0423418 | 0.00978566 —
4Ref 0.0439739 | 0.011447 — —
(b) La(error)
| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 3.53649 1.55637 | 0.390388 | 0.0666353
2Ref 1.51012 | 0.387115 | 0.074577 —
4Ref 0.387326 | 0.0722894 — —
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Table 6.3: Errors for y-velocity, time = 0.128

(¢) Loo(error)

| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 0.178308 | 0.0461935 | 0.0119461 | 0.00277669
2Ref 0.0536107 | 0.0156112 | 0.00482953 —
4Ref 0.0195496 | 0.00746759 — —
(a) Li(error)
| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 0.477776 | 0.171707 | 0.0421551 | 0.00849939
2Ref 0.171671 | 0.0427243 | 0.00970393 —
4Ref 0.0438788 | 0.0116263 — —
(b) La(error)
| Base Grid Size || h=1/32 | 1/64 | 1/128 | 1/256 |
Single Grid 3.47099 1.54005 0.398559 | 0.0779502
2Ref 1.56308 | 0.389457 | 0.0836362 —
4Ref 0.380423 | 0.0771922 — —

188
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As can be seen, for both times examined, and for both velocity components, local refinement
increases the accuracy of the computation as measured in Ly, L, and L, norms. For the Ly and L,
norms, the solution error is clearly reduced to a level comparable to the single-grid result with the
same resolution. In other words, we see the same error for the 64 x64 base grid with one refinement of
Npep = 2 as for the 128 x128 single-grid computation. This is most apparent in the L, norm, where
the numbers are almost identical; agreement between AMR results and the equivalent-resolution
single-grid results is slightly worse in the L, norm, and in the L; norm, agreement is often only
within a factor of two. This trend is more apparent for the n,.; = 4 cases. We believe that this is
because, while the dominant errors in the solutions are on the interiors of the refined grids around
the vortex centers, there are small errors in the solutions which are generated at the coarse-fine
interfaces. While these errors do not contribute significantly to the L, and Lo norms of the error,
they accumulate and affect the L; norm. One source of error at the coarse-fine error is due to the
conservative linear interpolation of the coarse-grid solution used to compute boundary conditions for
the advective updates. If the field being interpolated is not well-represented by linear interpolation,
some errors will be generated at the coarse-fine interface due to interpolation errors. In the case of
velocity advection, these interpolation errors will manifest themselves as filaments of vorticity one
fine cell wide which are generated at coarse-fine interfaces and then advected through the flow.

Another source of error in AMR computations, which was mentioned by Almgren et al
[5], is coarse-grid errors which are transported into refined regions. This is an inherent problem
with locally adaptive methods, since by design, the coarse-grid solution is less accurate than that in
refined regions. These errors can be minimized by choosing an appropriate error estimator, which

will ensure that the coarse-grid errors are roughly the same scale as errors on the fine grid.
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Finally, the creation of new grids through regridding can introduce errors. In many cases,
coarse-fine errors at what were coarse-fine interfaces remain behind as a shadow of the previous grid
configuration after the grids are moved. These errors are also then advected through the flow. After
a series of regridding operations, these errors can be created in many different regions of the domain.
Also, in the present code, when a region is newly refined from a coarser level, the coarse solution is
simply interpolated to fill the new refined grid. This creates errors on the new refined grid, since
the newly interpolated fine solution is not as smooth as if it had been a refined grid already. For
instance, after the first post-regridding timestep, the divergence in newly-refined regions will contain
a high-frequency component which is eventually damped by repeated application of the projection
operators as the solution evolves. When a previously refined region is coarsened, the new valid
regions on the coarse grid are filled with the averaged fine solution. In this case, we also see errors
due to the fact that the averaging process introduces some error into the coarse solution. In either
case, we see an increased error in the newly refined or coarsened regions.

So, while the L, and L, norms reflect the improvement of the dominant solution errors
around the vortices (which respond well to refinement because they are on the interiors of the refined
grids), the lessened responsiveness of the L; norm of the error reflects the small errors generated
at the coarse-fine interfaces, which are eventually spread through the domain by the background
flowfield. This effect is more apparent for the n,.y = 4 case, because the errors at coarse-fine
interfaces are larger, due to the stronger discontinuity in the grid spacing at coarse-fine interfaces
for nyep = 4.

This is borne out by examination of the error distributions in these cases. If we really are

achieving fine-grid accuracy, we would expect that the error distributions would look similar. We
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especially would like to see if solution errors near the coarse-fine interface are noticeably corrupting
the solution. For the 64x64 base grid case, Figure 6.12 shows the errors in the x-velocity, while
Figure 6.13 shows the errors in the y-velocity at ¢ = 0.128. It is apparent that, while the errors look
very much like the errors in the corresponding single-grid cases, there is a small but noticeable error
which is generated at coarse-fine interfaces and is then spread throughout the flow.

To better show these small AMR errors, Figures 6.14 and 6.15 show the same results, but
with a smaller color-scale range, to better show these errors.

It should be noted, however, that while the AMR, solutions show some additional error
due to coarse-fine interface errors, in all cases, refinement does improve the accuracy of the solution
in all norms. In other words, while there is some additional error relative to the uniformly fine-
grid solution, the use of AMR does markedly improve the accuracy of the solution relative to the
uniformly coarse-grid solution. Also, the errors generated at coarse-fine interfaces are still much
smaller than the dominant errors in the solutions, which are still due to solution features, rather
than grid boundaries.

Also, some of the coarse-fine interface error could be reduced if the error-estimation criteria
took coarse-fine errors into account, as the error-estimation of [67] does; also, it might benefit from
the flux-based Richardson extrapolation error-estimation method used by Propp, which takes the

surface/volume ratio of refined grids into account.

6.5 Performance

Almgren et al [5] demonstrated that when suitable care is used in optimizing the imple-

mentation of an adaptive projection algorithm, that sizeable savings in CPU time could be realized.
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Figure 6.12: Error in x-velocity at t=0.128 for (a) 128 x128 single-grid computation, (b) 64x64 base grid

with one factor 2 refinement, and (c) 32x32 base grid with one factor 4 refinement.
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Figure 6.13: Error in y-velocity at t=0.128 for (a) 128 x128 single-grid computation, (b) 64x64 base grid

with one factor 2 refinement, and (c) 32x32 base grid with one factor 4 refinement.
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Figure 6.14: Error in x-velocity at t=0.128 for (a) 128 x128 single-grid computation, (b) 64x64 base grid
with one factor 2 refinement, and (c) 32x32 base grid with one factor 4 refinement. Note that the scale of

the color map has been altered to emphasize small errors
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Figure 6.15: Error in y-velocity at t=0.128 for (a) 128 x128 single-grid computation, (b) 64x64 base grid
with one factor 2 refinement, and (c) 32x32 base grid with one factor 4 refinement. Note that the scale of

the color map has been altered to emphasize small errors
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In light of their results, we would expect that due to the similarity of the algorithms, suitable op-
timization of the code used in this work would produce similar savings. We do not present timing
results here because the purpose of this work was to develop an algorithm which represented a sim-
plification of the algorithm used in [5]. Because the code used in this work was a development code,
optimization for CPU efficiency was not performed as part of this work. We expect that after some
optimization, the algorithm presented here would present similar savings.

It should be mentioned that the place where the computational costs incurred by the
algorithm in this work are much higher than in [5] is in regridding operations. In [5], initializing new
fine-level solutions after regridding is performed entirely by interpolation of coarse-level data. In this
work, we perform a series of level advances and elliptic solves. Also, the Richardson extrapolation
error estimator involves an elliptic solve. So, in most cases, we would tend to regrid less often, and

buffer tagged cells more to compensate.
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Chapter 7

Software Implementation

Implementing adaptive methods can be difficult, requiring the use of fairly complicated
data structures and dynamic memory management to manage computations on the changing grid
structure. The use of object-oriented programming techniques, along with the use of a pre-existing
software infrastructure made this task manageable.

The algorithms described in this work were implemented in a hybrid of C++ [63] and
FORTRANT7 [23]. C++, with its advanced dynamic memory-management and object-oriented
capabilities, was used to construct classes which manage the computation. On the other hand,
floating-point intensive operations were performed in FORTRAN, to take advantage of the greater
optimization of FORTRAN for floating-point operations. The code used in this work, which also
represented a sizeable amount of shared infrastructure which was also used by Propp [51] and
Bettencourt [22], consisted of 27,300 lines of C++ code and 14,500 lines of FORTRAN code. The
header files for this code represented another 8200 lines of code. These numbers do not include the

code associated with BoxLib, an infrastructure library used as a base for the code.
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7.1 BoxLib

BoxLib [52], a library of C++ classes developed by the Center for Computational Science
and Engineering (CCSE) at the Lawrence Berkeley National Laboratory, was an instrumental part of
the implementation of this work. BoxLib was developed to facilitate management of computations
on unions of logically rectangular grids, and provided an infrastructure which greatly simplified
development of this algorithm.

For a single-grid computation, BoxLib provides much of the infrastructure needed to easily
implement a projection method. The IntVect class provides a convenient way to store and operate
on spatial indices. The Box class provides functionality for managing logically rectangular regions
in space. To store data, the FArrayBox class was used. The FArrayBox class is a container class
for floating point data which provides a convenient way of interfacing FORTRAN and C++. It also
contains functionality for operating on floating-point data directly.

While it provides a convenient infrastructure for implementing single-grid algorithms, for
managing adaptive computations on a dynamically changing hierarchy of grids, BoxLib proved
indispensable. The BoxArray class, which is an array of Box’s, proved useful for describing the
union of rectangles which make up a refined level. Additionally, the MultiFab class, an array of
FArrayBoxs with many additional features, was quite useful for organizing and operating on data

on the unions of logically rectangular grids which make up a level.

7.2 Managing the AMR hierarchy

In many ways, the basic structure of this code borrowed heavily from the adaptive imple-

mentation of Almgren et al. [5]. In general, our strategy has been to use a single parent AMR class



CHAPTER 7. SOFTWARE IMPLEMENTATION 199

AMR

Generic Amr Leve

<___

Physics-based
Amr Level Class

Figure 7.1: Basic class structure for AMR computations. Solid arrows indicate membership, while dashed
lines indicate derivation. In this figure, the AMR class contains a generic AMR Level class (actually, an
array of them), and the physics-dependent class is derived from the generic Amr Level class.
to manage the hierarchy of levels. This parent class contains an array of AMR level classes, which
manage the solution on individual levels of refinement. Since much of the functionality needed by
level classes is generically applicable to a broad class of adaptive algorithms, while other functionality
and implementation details are specific to a given problem being solved, broad use was made of the
inheritance features of C++ by defining a generic level-based class which contained the basic func-
tionality for managing a solution on an AMR refinement level and then deriving problem-specific
physics-based classes from the general AMR level class. See Figure 7.1. For more on the use of
derivation in the design of AMR classes, see Crutchfield and Welcome [32].

We also extensively use the concept of level-operator classes. A level-operator will contain
all the functionality and auxiliary data structures necessary to apply an operator on a level. For

the Euler equations, examples of level operator classes would be classes which manage the advection
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and projection operations done during the advance on a level.

7.2.1 Elliptic Solver

Design of the elliptic solvers was complicated by the desire to have a solver which could be
used both as a stand-alone elliptic solver (used for Poisson’s equation in [47] and for the steady-state
drift-diffusion equations in [22]) and as a solver which could be included in a time-dependent AMR
code (which was used in this work, and for the solution of porous media flow in a trickle-bed reactor
in [51]). This dual objective was realized through the use of derivation.

First, a set of classes was developed to provide elliptic solver capability for a generic AMR
system. The class AMRSolver manages the hierarchy of levels and provided an interface to the elliptic
solver. The AMRSolver class contains an array of LevelSolver classes, which manage the solution
on each AMR level. In the time dependent case, the AMRSolver is a statically defined object which
exists parallel to the time-dependent AMR hierarchy. The AMRSolver class contains all interface
functionality necessary to perform single-level or multi-level solves with £p,s. > 0 (see Chapter 3),
and to modify the solver’s grid hierarchy as it changes during the time-dependent solution evolution.

For a stand-alone elliptic solver, some capability had to be added to extend the elliptic
solver classes for use in this context. For example, while the LevelSolver classes manage the
solution on individual levels, they do not actually “own” the memory for the solution or right-hand-
side, for efficiency reasons. So, to construct a stand-alone solver, an AMRPoisson class was derived
from the AMRSolver class, and a LevelPoisson class was derived from the LevelSolver class (see
Figure 7.2). This greatly simplified code-development and re-use, because the same base classes

were used for both the time-dependent and stand-alone solvers.
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Y v
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Figure 7.2: Class structure for elliptic solver classes. Solid arrows indicate membership, while dashed

arrows indicate derivation.
7.2.2 Euler Equation Code

As was mentioned earlier, a great deal of the functionality necessary for managing time-
dependent AMR, computations is common across specific physical problem implementations. For
example, the functionality used to regrid, or to subcycle in time, is common to all implementations
which follow the basic AMR model that we use. On the other hand, many operations, such as
advancing on a level, are specific to the set of equations being solved. For this reason, the derivation
and virtual function features of C++ were exploited heavily in the implementation of the algorithms
in this work. The Amr and AmrLevel classes used as a starting point for the implementation of this
work were modified versions of classes originally developed by CCSE for solving time-dependent
problems using AMR [5, 50]. A schematic of the class structure used in the implementation of this
algorithm is shown in Figure 7.3.

The Amr class, which is very similar to the class used by [5], manages the entire AMR
hierarchy and the global time-stepping. For the Euler equations, the Amr class also allocates the
statically defined AmrSolver class, which will manage all elliptic solves. The Amr class contains an

array of AmrLevel classes, which contain the basic functionality to manage the solution on an AMR,
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Amr AmrSolver

AmrLeve Level Solver

CCProjector VelocityAdvector

Figure 7.3: Class structure for time-dependent incompressible Euler classes. Solid arrows indicate mem-
bership, while dashed arrows indicate derivation.

level. From the parent AmrLevel class is derived an Euler class, which contains the functionality
necessary to implement the specific algorithm being implemented, in this case, the cell-centered
projection method described in Chapter 4. The Euler class allocates several level-operator classes as
necessary, including the CCProjector and VelocityAdvector classes, which manage the projection
and advection parts of the algorithm, respectively. This design allows for greater modularity of the
different components of the algorithm, and made it easier to share code with other developers (for
example, the code used to implement the algorithm described in this work, that of Bettencourt [22],

and that of Propp [51] shared much of the basic infrastructure).
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7.3 Visualization

For code-development and examination of the results of AMR computations, good data
visualization is indispensable. We used two different visualization tools. AmrVis [14] was developed
by CCSE for the purpose of presenting results of AMR computations, and proved to be quite useful
for examining the results of finished computations. All color pictures of AMR results in this work
were generated using AmrVis.

For examining data during runs (for example, while debugging the code), the VIGL graphics

library [33], as extended by Hans Johansen for use with BoxLib, also proved quite useful.
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Chapter 8

Conclusions

8.1 Summary

This thesis presents an adaptive cell-centered projection method for the incompressible
Euler equations in two dimensions. We use block-structured local refinement in space and time to
reduce the amount of computational resources needed to compute numerical solutions with adequate
resolution.

First, a single-grid algorithm was presented, which uses the projection formulation of Bell,
Colella, and Glaz [16] to construct a second-order projection method which uses the approximate
projection discretization of Lai. Results were presented which indicated that the method is second-
order accurate.

Then, a multilevel algorithm for solving Poisson’s equation on a multilevel hierarchy of
locally refined grids using multigrid-accelerated point relaxation was presented. We introduced the
notions of composite operators, which operate on variables defined on the multilevel hierarchy of

grids, and level operators, which operate on variables defined on single refined levels. It was described
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how the use of composite operators will enable solutions to Poisson’s equation to attain the increased
accuracy expected from a locally-refined solution. Results of a test computation were presented to
demonstrate the benefits of local refinement on CPU time and memory usage. Also, an alternate
algorithm was presented which demonstrated the benefits of multilevel solution approach for elliptic
equations, rather than solving the equations using level operators and then computing corrections
to ensure that the solution satisfies the equations based on composite operators.

The single-grid projection algorithm was then extended to the solution of the incompressible
Euler equations on a multilevel hierarchy of grids. Like the algorithm of Almgren et al. [5], the
solution on finer grids is advanced at a finer timestep than that on coarser grids, and then is
synchronized with coarser levels when coarse and fine solutions reach the same time. The algorithm
described in this thesis differs from that of Almgren et al. in three major respects. For the projection
method described in this work, the synchronization step involves a synchronization projection based
on cell-centered composite operators to ensure that the composite solution satisfies the divergence
constraint based on composite operators. Also, to correct for errors in advection due to the presence
of coarse-fine interfaces, we employ a volume-discrepancy correction based on the scheme presented
by Propp [51] for porous media flows to compute a lagged correction which approximately corrects
for errors in advection. Finally, all elliptic solves performed during synchronization operations are
constructed as multilevel solves over all levels which have reached the same time. Because all elliptic
solves are based on cell-centered discretizations, it is expected that extension of this algorithm to
more complicated problems should be simplified.

Then, strategies for identifying regions which could benefit from local refinement are pre-

sented. Refined grids can be placed in user-defined locations, or refinements can be adaptively
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placed using user-defined criteria (usually based on solution features) or an estimate of local trun-
cation error based on Richardson extrapolation. Computation of estimates of the local truncation
error for Poisson’s equation involves comparing the Laplacian operator applied to the solution with
a coarsened Laplacian operator applied to a coarsened solution. For time-dependent problems, we
compute coarse and fine approximations to the discrete update equation, and then compare them.
It was noted that using Richardson extrapolation to estimate error, rather than using solution-based
estimators, allows the sources of solution error to be localized, which should improve the effectiveness
of local refinement.

The adaptive algorithm described in this work was applied to a series of test problems to
demonstrate its effectiveness. It was shown that solution features are not corrupted as the cross
coarse-fine interfaces. Also, it was shown that the O(h) advection errors due to coarse-fine mis-
matches in advection velocities can be reduced to O(h?) by using the volume-discrepancy correction
scheme used in this work. Finally, it was demonstrated that using local refinements can enable
solution accuracy comparable to the equivalent uniform fine-grid solutions. Solution errors due to
local refinement are presented as well. These errors, while enough to prevent the L; norm of the
errors in locally refined solutions from completely matching single-grid errors, are still uniformly

small, compared to other feature-based solution errors.

8.2 Conclusions and Future Work

We have shown that the method presented in this work is effective at modeling the simple
test cases presented in this work. In particular, we have demonstrated that the error caused by the

addition of adaptivity is small in relation to other solution errors for the problems examined, and
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that the volume-discrepancy correction is useful in reducing advection errors to approximately the
errors resulting from one uncorrected timestep.

The adaptive algorithm presented in this work is intended as the first step in a series
of extensions. The first, most obvious step is the extension to the incompressible Navier-Stokes
equations by adding viscosity. In a similar vein, diffusion processes should be added to the advected
scalar evolution equations. Also, extending this work to solve the equations of variable-density
incompressible flow would allow many more physical situations to be modeled.

Extension of this work to more realistic geometries would be useful. Addition of embedded-
boundary Cartesian grid techniques, like the ones employed in [50], would allow modeling of flows
in more complicated geometries. It is expected that extension of this algorithm to the embedded
boundary case will be simplified by the fact that there is only one set of (cell-centered) solvers which
need be extended. Also, along the lines of more realistic geometries would be the extension of this
algorithm to three-dimensions, which should be straightforward.

The coarse-fine errors seen in the computations indicate the need for better error-estimation
techniques, ones which will account for the presence of errors due to coarse-fine interfaces. For
example, the flux-based Richardson extrapolation error estimation technique presented in Propp
[51], which includes the surface-to-volume ratio of grids in its error-estimation scheme, could prove
useful.

Finally, there is the issue of regridding. In this work, a solution is created on new fine-level
grids by simply interpolating the existing coarse-level solution to the fine-level resolution. There is
evidence that the fine-level solution produced in this way is not smooth enough, and that a better way

of initializing new grids with a smooth solution is needed. It is expected that this will become more
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important when solving viscous flows, since while the interpolated solution is somewhat smooth, the

second derivatives of the interpolated solutions is not.
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